Hao Fu, Shengyang Huang, Chao Wang, Jun Su Kim, Yu Zhao, Yutong Wu, Peixun Xiong, Ho Seok Park
{"title":"Exploring Hybrid Electrolytes for Zn Metal Batteries","authors":"Hao Fu, Shengyang Huang, Chao Wang, Jun Su Kim, Yu Zhao, Yutong Wu, Peixun Xiong, Ho Seok Park","doi":"10.1002/aenm.202501152","DOIUrl":null,"url":null,"abstract":"Aqueous zinc metal batteries (AZBs) have emerged as promising alternatives to lithium-based energy storage systems owing to their low cost, intrinsic safety, and abundant elemental resources. However, their commercial viability has been severely restricted by critical challenges such as dendrite growth, chemical corrosion, hydrogen evolution reaction, poor temperature adaptability, and cathode dissolution. To address these issues, hybrid electrolyte strategies have been extensively explored, as they can stabilize the Zn metal anode, cathode, and electrode/electrolyte interface, demonstrating significant potential for AZBs. Herein, the recent advance in the design of hybrid electrolytes is comprehensively reviewed. First, the fundamental properties and the classification of hybrid electrolytes are discussed. Then, the challenges and strategies on anode, cathode, and electrolyte are systematically debated. Furthermore, critical considerations, including ionic conductivity, electrolyte stability, voltage window, and side reactions, for the rational design of hybrid electrolytes are addressed, along with the challenges in optimizing battery performance. Additionally, this review addresses bottleneck issues for practical AZBs, such as large-scale production, cost control, reproducibility, and safety. Finally, the prospects for the advanced hybrid electrolytes are provided, guiding the development of the practical AZBs toward future energy storage technologies.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"52 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc metal batteries (AZBs) have emerged as promising alternatives to lithium-based energy storage systems owing to their low cost, intrinsic safety, and abundant elemental resources. However, their commercial viability has been severely restricted by critical challenges such as dendrite growth, chemical corrosion, hydrogen evolution reaction, poor temperature adaptability, and cathode dissolution. To address these issues, hybrid electrolyte strategies have been extensively explored, as they can stabilize the Zn metal anode, cathode, and electrode/electrolyte interface, demonstrating significant potential for AZBs. Herein, the recent advance in the design of hybrid electrolytes is comprehensively reviewed. First, the fundamental properties and the classification of hybrid electrolytes are discussed. Then, the challenges and strategies on anode, cathode, and electrolyte are systematically debated. Furthermore, critical considerations, including ionic conductivity, electrolyte stability, voltage window, and side reactions, for the rational design of hybrid electrolytes are addressed, along with the challenges in optimizing battery performance. Additionally, this review addresses bottleneck issues for practical AZBs, such as large-scale production, cost control, reproducibility, and safety. Finally, the prospects for the advanced hybrid electrolytes are provided, guiding the development of the practical AZBs toward future energy storage technologies.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.