Seung Hee Jo,Hyun Ji Park,Haemyeong Jung,Ga Seul Lee,Jeong Hee Moon,Hyun-Soon Kim,Hyo-Jun Lee,Choonkyun Jung,Hye Sun Cho
{"title":"PROTEIN PHOSPHATASE2A B'η drives spliceosome subunit dephosphorylation to mediate alternative splicing following heat stress.","authors":"Seung Hee Jo,Hyun Ji Park,Haemyeong Jung,Ga Seul Lee,Jeong Hee Moon,Hyun-Soon Kim,Hyo-Jun Lee,Choonkyun Jung,Hye Sun Cho","doi":"10.1093/plcell/koaf117","DOIUrl":null,"url":null,"abstract":"Dephosphorylation of spliceosome components is an essential regulatory step for intron removal from pre-mRNA, thereby controlling gene expression. However, the specific phosphatase responsible for this dephosphorylation step has not been identified. Here, we show that Arabidopsis thaliana (Arabidopsis) PROTEIN PHOSPHATASE 2A B'η (PP2A B'η), a B subunit of PP2A, interacts with the splicing factors PRP18a, PRP16, and RH2 and facilitates their dephosphorylation by recognizing substrates through a conserved binding motif. This dephosphorylation is crucial for proper splicing of retained introns in heat stress-responsive genes, which is mediated by the PP2A interactor PRE-MRNA PROCESSING FACTOR 18a (PRP18a). Genetic inactivation of PP2A B'η abolished thermotolerance during seed germination and resulted in widespread intron retention in heat stress-responsive genes. Conversely, overexpression of PP2A B'η conferred enhanced thermotolerance, accompanied by the efficient removal of retained introns under heat stress. We demonstrate that a B regulatory subunit of PP2A plays a central role in dephosphorylating spliceosome components, regulating alternative splicing, facilitating acclimation to heat stress, and targeting specific spliceosome subunits that activate pre-mRNA splicing.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dephosphorylation of spliceosome components is an essential regulatory step for intron removal from pre-mRNA, thereby controlling gene expression. However, the specific phosphatase responsible for this dephosphorylation step has not been identified. Here, we show that Arabidopsis thaliana (Arabidopsis) PROTEIN PHOSPHATASE 2A B'η (PP2A B'η), a B subunit of PP2A, interacts with the splicing factors PRP18a, PRP16, and RH2 and facilitates their dephosphorylation by recognizing substrates through a conserved binding motif. This dephosphorylation is crucial for proper splicing of retained introns in heat stress-responsive genes, which is mediated by the PP2A interactor PRE-MRNA PROCESSING FACTOR 18a (PRP18a). Genetic inactivation of PP2A B'η abolished thermotolerance during seed germination and resulted in widespread intron retention in heat stress-responsive genes. Conversely, overexpression of PP2A B'η conferred enhanced thermotolerance, accompanied by the efficient removal of retained introns under heat stress. We demonstrate that a B regulatory subunit of PP2A plays a central role in dephosphorylating spliceosome components, regulating alternative splicing, facilitating acclimation to heat stress, and targeting specific spliceosome subunits that activate pre-mRNA splicing.