Louise Dupuis,Orianne Debeaupuis,Franck Simon,Hervé Isambert
{"title":"CausalCCC: a web server to explore intracellular causal pathways enabling cell-cell communication.","authors":"Louise Dupuis,Orianne Debeaupuis,Franck Simon,Hervé Isambert","doi":"10.1093/nar/gkaf404","DOIUrl":null,"url":null,"abstract":"Understanding cell-cell communication (CCC) pathways from single-cell or spatial transcriptomic data is key to unraveling biological processes. Recently, multiple CCC methods have been developed but primarily focus on refining ligand-receptor (L-R) interaction scores. A critical gap for a more comprehensive picture of cellular crosstalks lies in the integration of upstream and downstream intracellular pathways in the sender and receiver cells. We report here CausalCCC, https://miic.curie.fr/causalCCC.php, an interactive web server, which addresses this need by reconstructing gene-gene interaction pathways across two or more interacting cell types from single-cell or spatial transcriptomic data. CausalCCC includes a graphical introduction and a demo dataset within the workbench page as well as a comprehensive tutorial. CausalCCC methodology integrates a robust and scalable causal network reconstruction method, multivariate information-based inductive causation, with internally computed L-R pairs using LIANA+ (including CellphoneDBv5, SingleCellSignalR, Connectome, NATMI, and Log2FC). Alternatively, user-defined L-R pairs from any CCC methods can also be uploaded. We showcase here CausalCCC on different single-cell and spatial transcriptomic datasets from three original CCC methods (NicheNet, CellChat, and Misty). CausalCCC web server offers unique interactive visualization tools dedicated to single-cell data practitioners seeking to go beyond L-R scores and explore extended CCC pathways across multiple interacting cell types.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"4 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf404","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding cell-cell communication (CCC) pathways from single-cell or spatial transcriptomic data is key to unraveling biological processes. Recently, multiple CCC methods have been developed but primarily focus on refining ligand-receptor (L-R) interaction scores. A critical gap for a more comprehensive picture of cellular crosstalks lies in the integration of upstream and downstream intracellular pathways in the sender and receiver cells. We report here CausalCCC, https://miic.curie.fr/causalCCC.php, an interactive web server, which addresses this need by reconstructing gene-gene interaction pathways across two or more interacting cell types from single-cell or spatial transcriptomic data. CausalCCC includes a graphical introduction and a demo dataset within the workbench page as well as a comprehensive tutorial. CausalCCC methodology integrates a robust and scalable causal network reconstruction method, multivariate information-based inductive causation, with internally computed L-R pairs using LIANA+ (including CellphoneDBv5, SingleCellSignalR, Connectome, NATMI, and Log2FC). Alternatively, user-defined L-R pairs from any CCC methods can also be uploaded. We showcase here CausalCCC on different single-cell and spatial transcriptomic datasets from three original CCC methods (NicheNet, CellChat, and Misty). CausalCCC web server offers unique interactive visualization tools dedicated to single-cell data practitioners seeking to go beyond L-R scores and explore extended CCC pathways across multiple interacting cell types.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.