Next-Generation Fin-Structured PCM Solutions for Effective Thermal Management of Li-Ion Batteries

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-02-26 DOI:10.1002/htj.23307
S. M. D. Shehabaz, S. K. Gugulothu, Raju Muthyala, Praveen Barmavatu
{"title":"Next-Generation Fin-Structured PCM Solutions for Effective Thermal Management of Li-Ion Batteries","authors":"S. M. D. Shehabaz,&nbsp;S. K. Gugulothu,&nbsp;Raju Muthyala,&nbsp;Praveen Barmavatu","doi":"10.1002/htj.23307","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The efficiency and effectiveness of a battery thermal management system (BTMS) primarily depend on the limited heat dissipation capacity of the phase change material (PCM). In this study, a novel extended-surface PCM composite is designed to enhance the thermal management of lithium-ion batteries. Numerical investigations using ANSYS Fluent reveal that incorporating metallic fins significantly improves heat transfer by creating a multichannel thermal network. The modified BTMS demonstrates a 92.5% increase in operational duration compared with conventional PCM systems. Additionally, increasing the fin length from 6 to 14 mm improves operational time by 13.62%, while uniform fin placement enhances thermal performance by 9.25%. At higher ambient temperatures (20°C–50°C), the system achieved a 1.96-fold increase in operational duration compared with traditional setups. Furthermore, the optimized BTMS maintained the battery temperature below 60°C for 41%–93% longer durations across varying configurations, outperforming existing systems in high-temperature environments. These findings validate the effectiveness of extended-surface PCM composites in overcoming the limitations of conventional BTMSs, enhancing both battery performance and longevity.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 4","pages":"2659-2674"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency and effectiveness of a battery thermal management system (BTMS) primarily depend on the limited heat dissipation capacity of the phase change material (PCM). In this study, a novel extended-surface PCM composite is designed to enhance the thermal management of lithium-ion batteries. Numerical investigations using ANSYS Fluent reveal that incorporating metallic fins significantly improves heat transfer by creating a multichannel thermal network. The modified BTMS demonstrates a 92.5% increase in operational duration compared with conventional PCM systems. Additionally, increasing the fin length from 6 to 14 mm improves operational time by 13.62%, while uniform fin placement enhances thermal performance by 9.25%. At higher ambient temperatures (20°C–50°C), the system achieved a 1.96-fold increase in operational duration compared with traditional setups. Furthermore, the optimized BTMS maintained the battery temperature below 60°C for 41%–93% longer durations across varying configurations, outperforming existing systems in high-temperature environments. These findings validate the effectiveness of extended-surface PCM composites in overcoming the limitations of conventional BTMSs, enhancing both battery performance and longevity.

用于锂离子电池有效热管理的下一代鳍状结构PCM解决方案
电池热管理系统(BTMS)的效率和有效性主要取决于相变材料(PCM)有限的散热能力。在这项研究中,设计了一种新型的扩展表面PCM复合材料,以增强锂离子电池的热管理。利用ANSYS Fluent进行的数值研究表明,采用金属翅片可以通过创建多通道热网络显著改善传热。与传统的PCM系统相比,改进后的BTMS系统的运行时间增加了92.5%。此外,将翅片长度从6毫米增加到14毫米可使运行时间延长13.62%,而均匀的翅片放置可使热性能提高9.25%。在较高的环境温度(20°C - 50°C)下,与传统装置相比,该系统的运行时间增加了1.96倍。此外,优化后的BTMS在不同配置下将电池温度保持在60°C以下的持续时间延长41%-93%,在高温环境中优于现有系统。这些发现验证了扩展表面PCM复合材料在克服传统btms的局限性,提高电池性能和寿命方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信