On Thermal Convection Effect due to Fluid-Blocks of Varying Shapes Embedded in a Porous Medium

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-03-20 DOI:10.1002/htj.23324
Jayesh Chordiya, Padmakar Deshmukh, Ram V. Sharma
{"title":"On Thermal Convection Effect due to Fluid-Blocks of Varying Shapes Embedded in a Porous Medium","authors":"Jayesh Chordiya,&nbsp;Padmakar Deshmukh,&nbsp;Ram V. Sharma","doi":"10.1002/htj.23324","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper investigates the effect of natural convection heat transfer and fluid flow due to variations in the shape of fluid blocks embedded within a differentially heated porous enclosure. Such configurations are significant in thermal and engineering applications, including nuclear power plants, building insulation, and thermal management systems. To address design and geometric constraints, three common fluid-block shapes-Ťtriangular, square, and hexagonal-Ťare analyzed. Using the Darcy flow model for the porous medium, simulations are conducted to evaluate the stream function, temperature distribution, and Nusselt number across a range of parameters: block size (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.05</mn>\n \n <mo>≤</mo>\n \n <mi>B</mi>\n \n <mo>≤</mo>\n \n <mn>0.25</mn>\n </mrow>\n </mrow>\n </semantics></math>), conductivity ratio (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.5</mn>\n \n <mo>≤</mo>\n \n <mi>κ</mi>\n \n <mo>≤</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n </semantics></math>), triangular block position (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n \n <mo>,</mo>\n \n <mi>Y</mi>\n </mrow>\n </mrow>\n </semantics></math>), Rayleigh number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mn>3</mn>\n </msup>\n \n <mo>≤</mo>\n \n <mi>R</mi>\n \n <mi>a</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mn>5</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>), Darcy number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mrow>\n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n \n <mo>≤</mo>\n \n <mi>D</mi>\n \n <mi>a</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>), and Prandtl number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.1</mn>\n \n <mo>≤</mo>\n \n <mi>P</mi>\n \n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>100</mn>\n </mrow>\n </mrow>\n </semantics></math>). Key findings reveal that block size and position significantly impact convection heat transfer: for instance, a centrally positioned large hexagonal block reduces the average Nusselt number by up to 70%, while triangular blocks near the enclosure corners enhance heat transfer by 25%–30%. These results have practical implications for optimizing thermal management designs in porous systems, highlighting the importance of fluid-block geometry and positioning in controlling heat transfer.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 4","pages":"2777-2798"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the effect of natural convection heat transfer and fluid flow due to variations in the shape of fluid blocks embedded within a differentially heated porous enclosure. Such configurations are significant in thermal and engineering applications, including nuclear power plants, building insulation, and thermal management systems. To address design and geometric constraints, three common fluid-block shapes-Ťtriangular, square, and hexagonal-Ťare analyzed. Using the Darcy flow model for the porous medium, simulations are conducted to evaluate the stream function, temperature distribution, and Nusselt number across a range of parameters: block size ( 0.05 B 0.25 ), conductivity ratio ( 0.5 κ 10 ), triangular block position ( X , Y ), Rayleigh number ( 1 0 3 R a 1 0 5 ), Darcy number ( 1 0 3 D a 1 0 1 ), and Prandtl number ( 0.1 P r 100 ). Key findings reveal that block size and position significantly impact convection heat transfer: for instance, a centrally positioned large hexagonal block reduces the average Nusselt number by up to 70%, while triangular blocks near the enclosure corners enhance heat transfer by 25%–30%. These results have practical implications for optimizing thermal management designs in porous systems, highlighting the importance of fluid-block geometry and positioning in controlling heat transfer.

多孔介质中不同形状流体块的热对流效应
本文研究了自然对流传热和流体流动的影响,由于流体块的形状的变化嵌入在一个不同的加热多孔外壳。这种配置在热学和工程应用中非常重要,包括核电站、建筑隔热和热管理系统。为了解决设计和几何约束,分析了三种常见的流体块形状-Ťtriangular、正方形和六边形-Ťare。利用多孔介质的达西流动模型进行模拟,以评估一系列参数下的流函数、温度分布和努塞尔数:块大小(0.05≤B≤0.25);电导率(0.5≤κ≤10),三角块位置(X,Y ),瑞利数(1 0 3≤Ra≤15);达西数(1 0−3≤Da≤10−1);普朗特数(0.1≤Pr≤100)。主要研究结果表明,块的大小和位置显著影响对流传热:例如,位于中心位置的大六角形块可使平均努塞尔数减少高达70%,而靠近箱体角落的三角形块可使传热提高25%-30%。这些结果对优化多孔系统的热管理设计具有实际意义,突出了流体块的几何形状和定位在控制传热中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信