Classification Analysis of Transition Metal Compounds Using Quantum Machine Learning

IF 4.4 Q1 OPTICS
Kurudi V Vedavyasa, Ashok Kumar
{"title":"Classification Analysis of Transition Metal Compounds Using Quantum Machine Learning","authors":"Kurudi V Vedavyasa,&nbsp;Ashok Kumar","doi":"10.1002/qute.202400081","DOIUrl":null,"url":null,"abstract":"<p>Quantum machine learning (QML) leverages the potential of machine learning (ML) to explore the subtle patterns in huge datasets of complex nature with quantum advantages. QML accelerates materials research with active screening of chemical space, identifying novel materials for practical applications, and classifying structurally diverse materials given their measured properties. This study analyzes the performance of three efficient quantum machine learning algorithms viz., variational quantum classifier (VQC), quantum support vector classifier (QSVC), and quantum neural networks (QNN) for distinguishing transition metal chalcogenides (TMCs) from transitional metal oxides (TMOs). By employing feature selection, classical machine learning achieves 100% accuracy whereas QML achieves the highest performance of 99% and 98% for test and train data respectively on QSVC. Further, to extend the QML models for structural and functional analysis of materials that cannot be inferred directly from the formula, stability analysis, and magnetic nature analysis on 1000 and 500 materials are performed, respectively. The stability analysis achieves 78% accuracy with QSVC and the magnetic nature analysis achieves 88% with QNN establishing the competence of QML models. This study proves that QML models are remarkable in materials classification and analysis which fuels the task of materials discovery in the future.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum machine learning (QML) leverages the potential of machine learning (ML) to explore the subtle patterns in huge datasets of complex nature with quantum advantages. QML accelerates materials research with active screening of chemical space, identifying novel materials for practical applications, and classifying structurally diverse materials given their measured properties. This study analyzes the performance of three efficient quantum machine learning algorithms viz., variational quantum classifier (VQC), quantum support vector classifier (QSVC), and quantum neural networks (QNN) for distinguishing transition metal chalcogenides (TMCs) from transitional metal oxides (TMOs). By employing feature selection, classical machine learning achieves 100% accuracy whereas QML achieves the highest performance of 99% and 98% for test and train data respectively on QSVC. Further, to extend the QML models for structural and functional analysis of materials that cannot be inferred directly from the formula, stability analysis, and magnetic nature analysis on 1000 and 500 materials are performed, respectively. The stability analysis achieves 78% accuracy with QSVC and the magnetic nature analysis achieves 88% with QNN establishing the competence of QML models. This study proves that QML models are remarkable in materials classification and analysis which fuels the task of materials discovery in the future.

利用量子机器学习对过渡金属化合物进行分类分析
量子机器学习(QML)利用机器学习(ML)的潜力,在具有量子优势的复杂性质的巨大数据集中探索微妙的模式。QML通过主动筛选化学空间加速材料研究,为实际应用识别新材料,并根据其测量特性对结构多样的材料进行分类。本文分析了三种高效的量子机器学习算法,即变分量子分类器(VQC)、量子支持向量分类器(QSVC)和量子神经网络(QNN)在区分过渡金属硫族化合物(tmc)和过渡金属氧化物(TMOs)方面的性能。通过使用特征选择,经典机器学习在QSVC上达到100%的准确率,而QML在测试和训练数据上分别达到99%和98%的最高准确率。此外,为了将QML模型扩展到不能直接从公式中推断的材料的结构和功能分析,分别对1000种和500种材料进行了稳定性分析和磁性分析。QSVC稳定性分析准确率达到78%,QNN磁性分析准确率达到88%,建立了QML模型的胜任能力。该研究证明了QML模型在材料分类和分析方面的显著作用,为未来材料发现的任务提供了动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信