Sydney Yang, Allison Boboltz, Alexa Stern, Vaidehi Rathi, Gregg Duncan
{"title":"Synthetic Mucus Biomaterials Synergize with Antibiofilm Agents to Combat Pseudomonas aeruginosa Biofilms","authors":"Sydney Yang, Allison Boboltz, Alexa Stern, Vaidehi Rathi, Gregg Duncan","doi":"10.1002/adtp.202400359","DOIUrl":null,"url":null,"abstract":"<p>Bacterial biofilms are often highly resistant to antimicrobials causing persistent infections which, when not effectively managed, can significantly worsen clinical outcomes. As such, alternatives to standard antibiotic therapies have been highly sought after to address difficult-to-treat biofilm-associated infections. A biomaterial-based approach using the innate functions of mucins is hypothesized to modulate bacterial surface attachment and virulence can provide a new therapeutic strategy against biofilms. Based on the testing in <i>Pseudomonas aeruginosa</i> biofilms, it is found that synthetic mucus biomaterials can inhibit biofilm formation and significantly reduce the thickness of mature biofilms. In addition, if synthetic mucus biomaterials can work synergistically with DNase and/or α-amylase for enhanced biofilm dispersal is evaluated. Combination treatment with these antibiofilm agents and synthetic mucus biomaterials resulted in up to 2 log reductions in the viability of mature <i>P. aeruginosa</i> biofilms. Overall, this work provides a new bio-inspired, combinatorial approach to address biofilms and antibiotic-resistant bacterial infections.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400359","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400359","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial biofilms are often highly resistant to antimicrobials causing persistent infections which, when not effectively managed, can significantly worsen clinical outcomes. As such, alternatives to standard antibiotic therapies have been highly sought after to address difficult-to-treat biofilm-associated infections. A biomaterial-based approach using the innate functions of mucins is hypothesized to modulate bacterial surface attachment and virulence can provide a new therapeutic strategy against biofilms. Based on the testing in Pseudomonas aeruginosa biofilms, it is found that synthetic mucus biomaterials can inhibit biofilm formation and significantly reduce the thickness of mature biofilms. In addition, if synthetic mucus biomaterials can work synergistically with DNase and/or α-amylase for enhanced biofilm dispersal is evaluated. Combination treatment with these antibiofilm agents and synthetic mucus biomaterials resulted in up to 2 log reductions in the viability of mature P. aeruginosa biofilms. Overall, this work provides a new bio-inspired, combinatorial approach to address biofilms and antibiotic-resistant bacterial infections.