Qoolchain: A QUBO Preprocessing Toolchain for Enhancing Quantum Optimization

IF 4.4 Q1 OPTICS
Giacomo Orlandi, Deborah Volpe, Mariagrazia Graziano, Giovanna Turvani
{"title":"Qoolchain: A QUBO Preprocessing Toolchain for Enhancing Quantum Optimization","authors":"Giacomo Orlandi,&nbsp;Deborah Volpe,&nbsp;Mariagrazia Graziano,&nbsp;Giovanna Turvani","doi":"10.1002/qute.202400384","DOIUrl":null,"url":null,"abstract":"<p>Solving combinatorial optimization problems is crucial in research and industry but still challenging since these problems are usually NP-hard or NP-complete. Classical solvers struggle with their non-polynomial complexity. Although heuristic algorithms are widely used, they often fall short in execution time and accuracy, increasing the interest in quantum computing alternatives using Quadratic Unconstrained Binary Optimization (QUBO) formulations. However, current Noisy Intermediate-Scale Quantum (NISQ) computers and future early fault-tolerant quantum devices face limitations in qubit availability and circuit depth, necessitating preprocessing to reduce problem complexity. This study introduces Qoolchain, a QUBO preprocessing toolchain designed to reduce problem size and enhance solver performance. Developed in Cython, Qoolchain is compatible with major quantum frameworks and optimized for the Grover Adaptive Search (GAS) algorithm. It includes steps like persistency identification, decomposition, and probing to estimate function bounds, all with polynomial complexity. Qoolchain also proposes using the Grover Search algorithm for problem segments whose optimal value is known a priori from graph theory and Shannon decomposition to reduce QUBO problem complexity further. Evaluated against the D-Wave preprocessing toolchain on various problems, Qoolchain demonstrates higher efficiency and accuracy. It represents a significant advancement in enabling practical quantum solvers, addressing hardware limitations, and solving complex industry-relevant problems.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400384","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solving combinatorial optimization problems is crucial in research and industry but still challenging since these problems are usually NP-hard or NP-complete. Classical solvers struggle with their non-polynomial complexity. Although heuristic algorithms are widely used, they often fall short in execution time and accuracy, increasing the interest in quantum computing alternatives using Quadratic Unconstrained Binary Optimization (QUBO) formulations. However, current Noisy Intermediate-Scale Quantum (NISQ) computers and future early fault-tolerant quantum devices face limitations in qubit availability and circuit depth, necessitating preprocessing to reduce problem complexity. This study introduces Qoolchain, a QUBO preprocessing toolchain designed to reduce problem size and enhance solver performance. Developed in Cython, Qoolchain is compatible with major quantum frameworks and optimized for the Grover Adaptive Search (GAS) algorithm. It includes steps like persistency identification, decomposition, and probing to estimate function bounds, all with polynomial complexity. Qoolchain also proposes using the Grover Search algorithm for problem segments whose optimal value is known a priori from graph theory and Shannon decomposition to reduce QUBO problem complexity further. Evaluated against the D-Wave preprocessing toolchain on various problems, Qoolchain demonstrates higher efficiency and accuracy. It represents a significant advancement in enabling practical quantum solvers, addressing hardware limitations, and solving complex industry-relevant problems.

Abstract Image

Qoolchain:一种增强量子优化的QUBO预处理工具链
解决组合优化问题在研究和工业中是至关重要的,但仍然具有挑战性,因为这些问题通常是np困难或np完全的。经典的求解方法与它们的非多项式复杂性作斗争。虽然启发式算法被广泛使用,但它们往往在执行时间和准确性方面存在不足,这增加了人们对使用二次无约束二进制优化(QUBO)公式的量子计算替代方案的兴趣。然而,当前的噪声中等规模量子(NISQ)计算机和未来早期的容错量子器件在量子比特可用性和电路深度方面面临限制,需要预处理以降低问题的复杂性。本研究引入Qoolchain,一个QUBO预处理工具链,旨在减少问题规模和提高求解器的性能。Qoolchain是用Cython开发的,与主要的量子框架兼容,并针对Grover自适应搜索(GAS)算法进行了优化。它包括持久性识别、分解和探测以估计函数界等步骤,所有这些步骤都具有多项式复杂度。Qoolchain还提出对图论和香农分解中先验已知最优值的问题段使用Grover Search算法,进一步降低QUBO问题的复杂度。通过与D-Wave预处理工具链在各种问题上的对比,qool - chain显示出更高的效率和准确性。它代表了在实现实用量子求解器、解决硬件限制和解决复杂的行业相关问题方面的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信