{"title":"Extremal Results on Conflict-Free Coloring","authors":"Sriram Bhyravarapu, Shiwali Gupta, Subrahmanyam Kalyanasundaram, Rogers Mathew","doi":"10.1002/jgt.23223","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n </semantics></math> denotes the maximum degree of the graph.\n\n </p><ul>\n \n <li>\n <p>We show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo> </mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Dębski and Przybyło had shown that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a line graph, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. As an open question, they had asked if their result could be extended to claw-free (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free) graphs, which is a superclass of line graphs. Since <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, our result answers their open question. It is known that there exist separate families of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mtext>.</mtext>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n \n <li>\n <p>For a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, we show that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>k</mi>\n \n <mo> </mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. This bound is asymptotically tight for some values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> since there are graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n \n <li>\n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math> be an integer. We define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> as follows:\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>:</mo>\n \n <mi>G</mi>\n <mspace></mspace>\n <mspace></mspace>\n \n <mtext>is a graph with minimum degree at least</mtext>\n <mspace></mspace>\n <mspace></mspace>\n \n <mi>δ</mi>\n \n <mo>}</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math></span><span></span></div>\n \n \n <p>It is easy to see that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>δ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo><</mo>\n \n <mi>δ</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> be a positive constant. It was shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. In this paper, we show (i) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mfrac>\n <mrow>\n <mi>c</mi>\n \n <mi>Δ</mi>\n </mrow>\n \n <mrow>\n <msup>\n <mi>ln</mi>\n \n <mi>ϵ</mi>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n </mrow>\n </mfrac>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </semantics></math> is a constant such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>ϵ</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and (ii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <msup>\n <mi>Δ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </semantics></math> is a constant such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>ϵ</mi>\n \n <mo><</mo>\n \n <mn>0.003</mn>\n </mrow>\n </mrow>\n </semantics></math>. Together with the known upper bound <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, this implies that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <msup>\n <mi>Δ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n </ul></div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"259-268"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph , the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by . By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by ). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, denotes the maximum degree of the graph.
We show that if is a -free graph, then . Dębski and Przybyło had shown that if is a line graph, then . As an open question, they had asked if their result could be extended to claw-free (-free) graphs, which is a superclass of line graphs. Since , our result answers their open question. It is known that there exist separate families of -free graphs with and .
For a -free graph on vertices, we show that . This bound is asymptotically tight for some values of since there are graphs with .
Let be an integer. We define as follows:
It is easy to see that when . Let be a positive constant. It was shown that . In this paper, we show (i) , where is a constant such that and (ii) , where is a constant such that . Together with the known upper bound , this implies that .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .