Euler Gallego-Cartagena, Wendy Morgado-Gamero, Iuleder de Moya-Hernández, Carlos Díaz-Uribe, Alexander Parody, Héctor Morillas, Brayan Bayona-Pacheco, Gabrielle Pellegrin, Dayana Agudelo-Castañeda
{"title":"Urbanisation and Lockdown Impact on Airborne Fungal Communities in Tropical Landscapes: A Comparative Study of Urban and Peri-Urban Environments","authors":"Euler Gallego-Cartagena, Wendy Morgado-Gamero, Iuleder de Moya-Hernández, Carlos Díaz-Uribe, Alexander Parody, Héctor Morillas, Brayan Bayona-Pacheco, Gabrielle Pellegrin, Dayana Agudelo-Castañeda","doi":"10.1111/1758-2229.70078","DOIUrl":null,"url":null,"abstract":"<p>This study assessed the concentration, composition, and spatiotemporal distribution of airborne fungi in a metropolitan area, comparing urban and peri-urban sites across rainy and dry seasons. An 8-month fungal bioaerosol monitoring was conducted using a six-stage Andersen cascade impactor. Data analysis involved generalised linear regression models and multifactorial ANOVA to assess the relationships between meteorological conditions, sampling sites, campaigns, fungal concentrations, and impactor stages. Additionally, a Bayesian neural network was developed to predict bioaerosol dynamics based on the analysed variables. We identified 10 viable fungal species, including <i>Aspergillus niger</i>, <i>Aspergillus nidulans</i>, <i>Aspergillus</i><i>. fumigatus</i>, <i>Aspergillus terreus</i>, <i>Aspergillus flavus</i>, <i>Aspergillus versicolor</i>, <i>Penicillium</i> spp. and <i>Fusarium oxysporum</i>. Notable differences in the aerodynamic sizes of fungal particles influenced their distribution and potential impact on the respiratory system. The Bayesian neural network successfully predicted fungal bioaerosol concentrations with an accuracy of 76.87%. Our findings reveal the significant role of environmental and human-related factors in shaping bioaerosol distribution in tropical urban contexts. This research provides essential insights into the behaviour of fungal bioaerosols, highlighting their relevance for public health, especially for immunocompromised populations, and their impact on local agriculture. Furthermore, it demonstrates the potential of fungal bioaerosols as bioindicators for environmental monitoring and predictive modelling.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70078","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the concentration, composition, and spatiotemporal distribution of airborne fungi in a metropolitan area, comparing urban and peri-urban sites across rainy and dry seasons. An 8-month fungal bioaerosol monitoring was conducted using a six-stage Andersen cascade impactor. Data analysis involved generalised linear regression models and multifactorial ANOVA to assess the relationships between meteorological conditions, sampling sites, campaigns, fungal concentrations, and impactor stages. Additionally, a Bayesian neural network was developed to predict bioaerosol dynamics based on the analysed variables. We identified 10 viable fungal species, including Aspergillus niger, Aspergillus nidulans, Aspergillus. fumigatus, Aspergillus terreus, Aspergillus flavus, Aspergillus versicolor, Penicillium spp. and Fusarium oxysporum. Notable differences in the aerodynamic sizes of fungal particles influenced their distribution and potential impact on the respiratory system. The Bayesian neural network successfully predicted fungal bioaerosol concentrations with an accuracy of 76.87%. Our findings reveal the significant role of environmental and human-related factors in shaping bioaerosol distribution in tropical urban contexts. This research provides essential insights into the behaviour of fungal bioaerosols, highlighting their relevance for public health, especially for immunocompromised populations, and their impact on local agriculture. Furthermore, it demonstrates the potential of fungal bioaerosols as bioindicators for environmental monitoring and predictive modelling.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.