Doubly Orthogonal Equi-Squares and Sliced Orthogonal Arrays

IF 0.5 4区 数学 Q3 MATHEMATICS
John Lorch
{"title":"Doubly Orthogonal Equi-Squares and Sliced Orthogonal Arrays","authors":"John Lorch","doi":"10.1002/jcd.21982","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We introduce doubly orthogonal equi-squares. Using linear algebra over finite fields, we produce large families of mutually <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>q</mi>\n \n <mi>s</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>-doubly orthogonal equi-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>q</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mi>s</mi>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> squares, and show these are of maximal size when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mo>≤</mo>\n \n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>. These results specialize to the results of Xu, Haaland, and Qian when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>=</mo>\n \n <mi>s</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and the equi-squares are Sudoku Latin squares of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. Further, we show how a collection of mutually <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>q</mi>\n \n <mi>s</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>-doubly orthogonal equi-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>q</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mi>s</mi>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> squares can be used to construct sliced orthogonal arrays of strength two. These orthogonal arrays have important applications in statistical designs.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 7","pages":"275-283"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21982","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce doubly orthogonal equi-squares. Using linear algebra over finite fields, we produce large families of mutually q s -doubly orthogonal equi- q r + s squares, and show these are of maximal size when s r + 1 . These results specialize to the results of Xu, Haaland, and Qian when r = s = 1 and the equi-squares are Sudoku Latin squares of order q 2 . Further, we show how a collection of mutually q s -doubly orthogonal equi- q r + s squares can be used to construct sliced orthogonal arrays of strength two. These orthogonal arrays have important applications in statistical designs.

双正交等平方和切片正交阵列
我们引入双正交等平方。利用有限域上的线性代数,我们得到互qs的大族——双正交的等qr+ s的平方,并证明当s≤r + 1时它们是最大的。这些结果集中于Xu, Haaland,当r = s = 1时,其等方为q阶数独拉丁方阵2 .此外,我们展示了一个相互q - s -双正交相等q - r的集合+ s平方可以用来构造强度为2的正交切片阵列。这些正交阵列在统计设计中有重要的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信