Spectral Method for Solving the Time-Dependent Schrödinger Equation on a Non-Uniform Coordinate Grid

IF 0.4 Q4 PHYSICS, PARTICLES & FIELDS
M. A. Zakharov
{"title":"Spectral Method for Solving the Time-Dependent Schrödinger Equation on a Non-Uniform Coordinate Grid","authors":"M. A. Zakharov","doi":"10.1134/S1547477124702595","DOIUrl":null,"url":null,"abstract":"<p>The fundamental possibility of a numerical solution of the time-dependent Schrödinger equation for a wave function defined on a non-uniform coordinate grid by the spectral method using the fast Fourier transform algorithm is discussed. The method is based on reducing the non-uniform coordinate grid to a uniform one by a non-linear transformation of coordinates and approximating the obtained evolution operator using the Lie–Trotter–Suzuki product formula. Algorithms for the numerical solution of the first and second orders are developed.</p>","PeriodicalId":730,"journal":{"name":"Physics of Particles and Nuclei Letters","volume":"22 2","pages":"468 - 476"},"PeriodicalIF":0.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1547477124702595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental possibility of a numerical solution of the time-dependent Schrödinger equation for a wave function defined on a non-uniform coordinate grid by the spectral method using the fast Fourier transform algorithm is discussed. The method is based on reducing the non-uniform coordinate grid to a uniform one by a non-linear transformation of coordinates and approximating the obtained evolution operator using the Lie–Trotter–Suzuki product formula. Algorithms for the numerical solution of the first and second orders are developed.

非均匀坐标网格上求解时间相关Schrödinger方程的谱法
讨论了用快速傅立叶变换算法用谱法求解在非均匀坐标网格上定义的波函数时相关Schrödinger方程的基本可能性。该方法通过坐标的非线性变换将非均匀坐标网格化约为均匀坐标网格,并利用Lie-Trotter-Suzuki积公式逼近得到的演化算子。提出了一阶和二阶数值解的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Particles and Nuclei Letters
Physics of Particles and Nuclei Letters PHYSICS, PARTICLES & FIELDS-
CiteScore
0.80
自引率
20.00%
发文量
108
期刊介绍: The journal Physics of Particles and Nuclei Letters, brief name Particles and Nuclei Letters, publishes the articles with results of the original theoretical, experimental, scientific-technical, methodological and applied research. Subject matter of articles covers: theoretical physics, elementary particle physics, relativistic nuclear physics, nuclear physics and related problems in other branches of physics, neutron physics, condensed matter physics, physics and engineering at low temperatures, physics and engineering of accelerators, physical experimental instruments and methods, physical computation experiments, applied research in these branches of physics and radiology, ecology and nuclear medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信