Power-regularity of weighted shift operators

IF 0.8 Q2 MATHEMATICS
Chaolong Hu, Youqing Ji
{"title":"Power-regularity of weighted shift operators","authors":"Chaolong Hu,&nbsp;Youqing Ji","doi":"10.1007/s43036-025-00442-0","DOIUrl":null,"url":null,"abstract":"<div><p>A linear bounded operator <i>T</i> on a complex Banach space <i>X</i> is said to be <i>power-regular</i> if the sequence <span>\\(\\{\\Vert T^n x\\Vert ^{\\frac{1}{n}}\\}_{n=1}^{\\infty }\\)</span> is convergent for every <span>\\(x\\in X\\)</span>. For unilateral weighted shift <i>S</i>, we give a sufficient condition that <i>S</i> is power-regular. As an application, we construct a class of power-regular operators. Moreover, we show that there exist invertible power-regular bilateral weighted shifts, whose inverses are not power-regular.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00442-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A linear bounded operator T on a complex Banach space X is said to be power-regular if the sequence \(\{\Vert T^n x\Vert ^{\frac{1}{n}}\}_{n=1}^{\infty }\) is convergent for every \(x\in X\). For unilateral weighted shift S, we give a sufficient condition that S is power-regular. As an application, we construct a class of power-regular operators. Moreover, we show that there exist invertible power-regular bilateral weighted shifts, whose inverses are not power-regular.

加权移位算子的幂正则性
复Banach空间X上的线性有界算子T是幂正则的,如果序列\(\{\Vert T^n x\Vert ^{\frac{1}{n}}\}_{n=1}^{\infty }\)对每一个\(x\in X\)都是收敛的。对于单边加权位移S,给出了S是幂正则的充分条件。作为应用,构造了一类幂正则算子。此外,我们还证明了存在可逆的幂正则双边加权位移,其逆不是幂正则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信