Parnian Mirabi, Fariba Vaez Ghasemi, Masoud Zakeri, Ibrahim Ogunsanya and Kevin Golovin
{"title":"Corrosion-resistant omniphobic coating for low-carbon steel substrates using silica layers enhanced with ethylenediamine tetraacedic acid","authors":"Parnian Mirabi, Fariba Vaez Ghasemi, Masoud Zakeri, Ibrahim Ogunsanya and Kevin Golovin","doi":"10.1039/D5SM00046G","DOIUrl":null,"url":null,"abstract":"<p >The present work develops a highly liquid repellent, <em>i.e.</em> omniphobic, coating designed specifically for metallic substrates like low carbon steels and evaluates its potential as a barrier to corrosion. Polydimethylsiloxane (PDMS) chains are grafted to an intermediary silica layer <em>via</em> the hydrolysis and polycondensation of a difunctional chlorosilane monomer, resulting in a contact angle hysteresis of ∼3° when deposited on unpolished low carbon steel substrates. However, the use of chlorosilanes to fabricate the omniphobic PDMS can corrode steel. To circumvent this, the coating uses a phosphate buffer solution to partially neutralize the silica precursor solution, and ethylenediamine tetraacedic acid (EDTA) to passivate any released Fe ions. The inhibition of corrosion is evidenced visually and by unchanging surface metrology parameters even after two months following coating deposition. Potentiodynamic polarization data indicate that the omniphobic layer provides a barrier to water ingress, as evidenced by a current density of ∼10<small><sup>−6</sup></small> A cm<small><sup>−2</sup></small>, two orders of magnitude lower than the steel coated with the silica but without the PDMS chains. Electrochemical impedance spectroscopy data indicates the absence of an inductive loop (<em>i.e.</em> no ongoing corrosion) and a high polarization resistance of 40 000 Ω cm<small><sup>2</sup></small> for the omniphobic coating. This work not only indicates that omniphobic grafted polymer chains like PDMS exhibit anti-corrosion properties, but also provides a method for depositing such coatings onto metals without corroding the substrate, even when using chlorosilane precursors that evolve hydrochloric acid.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 19","pages":" 3829-3838"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d5sm00046g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00046g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present work develops a highly liquid repellent, i.e. omniphobic, coating designed specifically for metallic substrates like low carbon steels and evaluates its potential as a barrier to corrosion. Polydimethylsiloxane (PDMS) chains are grafted to an intermediary silica layer via the hydrolysis and polycondensation of a difunctional chlorosilane monomer, resulting in a contact angle hysteresis of ∼3° when deposited on unpolished low carbon steel substrates. However, the use of chlorosilanes to fabricate the omniphobic PDMS can corrode steel. To circumvent this, the coating uses a phosphate buffer solution to partially neutralize the silica precursor solution, and ethylenediamine tetraacedic acid (EDTA) to passivate any released Fe ions. The inhibition of corrosion is evidenced visually and by unchanging surface metrology parameters even after two months following coating deposition. Potentiodynamic polarization data indicate that the omniphobic layer provides a barrier to water ingress, as evidenced by a current density of ∼10−6 A cm−2, two orders of magnitude lower than the steel coated with the silica but without the PDMS chains. Electrochemical impedance spectroscopy data indicates the absence of an inductive loop (i.e. no ongoing corrosion) and a high polarization resistance of 40 000 Ω cm2 for the omniphobic coating. This work not only indicates that omniphobic grafted polymer chains like PDMS exhibit anti-corrosion properties, but also provides a method for depositing such coatings onto metals without corroding the substrate, even when using chlorosilane precursors that evolve hydrochloric acid.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.