Conductive RuO2 binders enhance mechanical stability of macroporous Nb–SnO2 particles as cathode catalyst supports for high-performance PEFCs†

Thi Thanh Nguyen Ho, Tomoyuki Hirano, Aoi Takano, Syu Miyasaka, Eishi Tanabe, Makoto Maeda, Eka Lutfi Septiani, Kiet Le Anh Cao and Takashi Ogi
{"title":"Conductive RuO2 binders enhance mechanical stability of macroporous Nb–SnO2 particles as cathode catalyst supports for high-performance PEFCs†","authors":"Thi Thanh Nguyen Ho, Tomoyuki Hirano, Aoi Takano, Syu Miyasaka, Eishi Tanabe, Makoto Maeda, Eka Lutfi Septiani, Kiet Le Anh Cao and Takashi Ogi","doi":"10.1039/D4LF00404C","DOIUrl":null,"url":null,"abstract":"<p >Niobium-doped tin oxide (NTO) particles with a macroporous structure have been developed as catalyst supports for enhancing the durability and performance of polymer electrolyte fuel cells (PEFCs). This macroporous architecture improves the mass transport properties of the electrode. However, their weak mechanical strength can cause structural collapse, thereby limiting single-cell performance at high current densities. In this study, we employed ruthenium oxide (RuO<small><sub>2</sub></small>) as a binder to integrate with macroporous NTO particles (denoted as NTO/RuO<small><sub>2</sub></small>). This approach simultaneously enhanced the electrical conductivity and mechanical strength of the catalyst supports, improving the performance of PEFCs. Incorporating RuO<small><sub>2</sub></small> binders effectively stabilized the macroporous structure, and the NTO/RuO<small><sub>2</sub></small> particles with 50 wt% RuO<small><sub>2</sub></small> loading maintained their structural integrity under high compression pressures of up to 40 MPa. The aggregated NTO/RuO<small><sub>2</sub></small> particles containing 50 wt% RuO<small><sub>2</sub></small> binder also exhibited higher conductivity than the NTO aggregates without RuO<small><sub>2</sub></small> binder, which was attributed to the conductive network formed by RuO<small><sub>2</sub></small>. Importantly, the membrane electrode assembly (MEA) fabricated with macroporous NTO/RuO<small><sub>2</sub></small> particles containing 20 wt% RuO<small><sub>2</sub></small> binder achieved a maximum current density of 2.16 A cm<small><sup>−2</sup></small> at 60 °C and 100% relative humidity (RH), outperforming the MEA utilizing Carbon Vulcan as the support (2.06 A cm<small><sup>−2</sup></small>). Furthermore, the enhanced hydrophilic properties of the RuO<small><sub>2</sub></small> binder improved water retention at the catalyst layer/membrane interface, thus promoting membrane hydration and overall cell performance at a high temperature of 80 °C and a low RH of 30%.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 3","pages":" 795-807"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00404c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d4lf00404c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Niobium-doped tin oxide (NTO) particles with a macroporous structure have been developed as catalyst supports for enhancing the durability and performance of polymer electrolyte fuel cells (PEFCs). This macroporous architecture improves the mass transport properties of the electrode. However, their weak mechanical strength can cause structural collapse, thereby limiting single-cell performance at high current densities. In this study, we employed ruthenium oxide (RuO2) as a binder to integrate with macroporous NTO particles (denoted as NTO/RuO2). This approach simultaneously enhanced the electrical conductivity and mechanical strength of the catalyst supports, improving the performance of PEFCs. Incorporating RuO2 binders effectively stabilized the macroporous structure, and the NTO/RuO2 particles with 50 wt% RuO2 loading maintained their structural integrity under high compression pressures of up to 40 MPa. The aggregated NTO/RuO2 particles containing 50 wt% RuO2 binder also exhibited higher conductivity than the NTO aggregates without RuO2 binder, which was attributed to the conductive network formed by RuO2. Importantly, the membrane electrode assembly (MEA) fabricated with macroporous NTO/RuO2 particles containing 20 wt% RuO2 binder achieved a maximum current density of 2.16 A cm−2 at 60 °C and 100% relative humidity (RH), outperforming the MEA utilizing Carbon Vulcan as the support (2.06 A cm−2). Furthermore, the enhanced hydrophilic properties of the RuO2 binder improved water retention at the catalyst layer/membrane interface, thus promoting membrane hydration and overall cell performance at a high temperature of 80 °C and a low RH of 30%.

导电的RuO2粘结剂增强了大孔Nb-SnO2颗粒作为高性能pefc†阴极催化剂载体的机械稳定性
研究了具有大孔结构的掺铌氧化锡(NTO)颗粒作为催化剂载体,用于提高聚合物电解质燃料电池(pefc)的耐久性和性能。这种大孔结构改善了电极的传质性能。然而,它们较弱的机械强度会导致结构崩溃,从而限制了单电池在高电流密度下的性能。在本研究中,我们使用氧化钌(RuO2)作为粘合剂与大孔NTO颗粒(记为NTO/RuO2)结合。这种方法同时提高了催化剂载体的导电性和机械强度,改善了pefc的性能。加入RuO2粘结剂可以有效地稳定大孔结构,在高达40 MPa的高压下,RuO2负载为50 wt%的NTO/RuO2颗粒仍能保持其结构完整性。含有50 wt% RuO2粘结剂的NTO/RuO2团聚体的电导率也高于不含RuO2粘结剂的NTO团聚体,这是由于RuO2形成的导电网络所致。重要的是,由含有20 wt% RuO2粘合剂的大孔NTO/RuO2颗粒制成的膜电极组件(MEA)在60°C和100%相对湿度(RH)下的最大电流密度为2.16 a cm - 2,优于使用Carbon Vulcan作为支撑的MEA (2.06 a cm - 2)。此外,RuO2粘合剂的亲水性增强改善了催化剂层/膜界面的保水性,从而促进了80℃高温和30%低相对湿度下膜的水化和整体电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信