Chloride-improved crystallization in sequentially vacuum-deposited perovskites for p–i–n perovskite solar cells†

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jin Yan, Jasmeen Nespoli, Reinder K. Boekhoff, Haoxu Wang, Timo Gort, Martijn Tijssen, Bernardus Zijlstra, Arjan Houtepen, Tom J. Savenije, Olindo Isabella and Luana Mazzarella
{"title":"Chloride-improved crystallization in sequentially vacuum-deposited perovskites for p–i–n perovskite solar cells†","authors":"Jin Yan, Jasmeen Nespoli, Reinder K. Boekhoff, Haoxu Wang, Timo Gort, Martijn Tijssen, Bernardus Zijlstra, Arjan Houtepen, Tom J. Savenije, Olindo Isabella and Luana Mazzarella","doi":"10.1039/D4SE01744G","DOIUrl":null,"url":null,"abstract":"<p >Sequential thermal evaporation is an emerging technique for obtaining perovskite (PVK) photoactive materials for solar cell applications. Advantages include solvent-free processing, accurate stoichiometry control, and scalable processing. Nevertheless, the power conversion efficiency (PCE) of PVK solar cells (PSCs) fabricated by evaporation still lags behind that of solution-processed PSCs. Here, based on multi-cycle sequential thermal evaporation, we systematically investigate the effects of the post-deposition annealing temperature on the PVK properties in terms of surface morphology, opto-electronic properties, and device performance. We find that the average grain size increases to almost 1 μm and charge carrier mobilities exceed 50 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> when the annealing temperature is increased to 170 °C. We introduce a trace of PbCl<small><sub>2</sub></small> to the multi-cycle sequential deposition to improve the absorber crystallinity at a lower annealing temperature of 150 °C, as evidenced by the XRD and PL analyses. The resulting PSC in a p–i–n structure yields a PCE of 18.5% with a cell area of 0.09 cm<small><sup>2</sup></small>. With the same deposition parameters, the cell area is scaled up to 0.36 cm<small><sup>2</sup></small>, achieving champion PCEs of 17.06%. This indicates the great potential of this technology for the commercialization of PSCs in the future.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 10","pages":" 2729-2737"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01744g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01744g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential thermal evaporation is an emerging technique for obtaining perovskite (PVK) photoactive materials for solar cell applications. Advantages include solvent-free processing, accurate stoichiometry control, and scalable processing. Nevertheless, the power conversion efficiency (PCE) of PVK solar cells (PSCs) fabricated by evaporation still lags behind that of solution-processed PSCs. Here, based on multi-cycle sequential thermal evaporation, we systematically investigate the effects of the post-deposition annealing temperature on the PVK properties in terms of surface morphology, opto-electronic properties, and device performance. We find that the average grain size increases to almost 1 μm and charge carrier mobilities exceed 50 cm2 V−1 s−1 when the annealing temperature is increased to 170 °C. We introduce a trace of PbCl2 to the multi-cycle sequential deposition to improve the absorber crystallinity at a lower annealing temperature of 150 °C, as evidenced by the XRD and PL analyses. The resulting PSC in a p–i–n structure yields a PCE of 18.5% with a cell area of 0.09 cm2. With the same deposition parameters, the cell area is scaled up to 0.36 cm2, achieving champion PCEs of 17.06%. This indicates the great potential of this technology for the commercialization of PSCs in the future.

Abstract Image

p-i-n钙钛矿太阳能电池中顺序真空沉积钙钛矿的氯化物改进结晶
顺序热蒸发是一种新兴的获得钙钛矿(PVK)光活性材料的技术,用于太阳能电池。优点包括无溶剂处理,精确的化学计量控制和可扩展的处理。然而,蒸发法制备的PVK太阳能电池的功率转换效率(PCE)仍落后于溶液法制备的PSCs。本文基于多循环顺序热蒸发,系统地研究了沉积后退火温度对PVK表面形貌、光电性能和器件性能的影响。我们发现,当退火温度提高到170℃时,平均晶粒尺寸增加到近1 μm,载流子迁移率超过50 cm2 V−1 s−1。XRD和PL分析表明,在150°C的较低退火温度下,我们在多循环顺序沉积中引入了微量的PbCl2,以提高吸收剂的结晶度。在p-i-n结构中得到的PSC的PCE为18.5%,电池面积为0.09 cm2。在相同的沉积参数下,电池面积扩大到0.36 cm2,实现了17.06%的冠军pce。这表明了该技术在未来psc商业化方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信