Chloride-improved crystallization in sequentially vacuum-deposited perovskites for p–i–n perovskite solar cells†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jin Yan, Jasmeen Nespoli, Reinder K. Boekhoff, Haoxu Wang, Timo Gort, Martijn Tijssen, Bernardus Zijlstra, Arjan Houtepen, Tom J. Savenije, Olindo Isabella and Luana Mazzarella
{"title":"Chloride-improved crystallization in sequentially vacuum-deposited perovskites for p–i–n perovskite solar cells†","authors":"Jin Yan, Jasmeen Nespoli, Reinder K. Boekhoff, Haoxu Wang, Timo Gort, Martijn Tijssen, Bernardus Zijlstra, Arjan Houtepen, Tom J. Savenije, Olindo Isabella and Luana Mazzarella","doi":"10.1039/D4SE01744G","DOIUrl":null,"url":null,"abstract":"<p >Sequential thermal evaporation is an emerging technique for obtaining perovskite (PVK) photoactive materials for solar cell applications. Advantages include solvent-free processing, accurate stoichiometry control, and scalable processing. Nevertheless, the power conversion efficiency (PCE) of PVK solar cells (PSCs) fabricated by evaporation still lags behind that of solution-processed PSCs. Here, based on multi-cycle sequential thermal evaporation, we systematically investigate the effects of the post-deposition annealing temperature on the PVK properties in terms of surface morphology, opto-electronic properties, and device performance. We find that the average grain size increases to almost 1 μm and charge carrier mobilities exceed 50 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> when the annealing temperature is increased to 170 °C. We introduce a trace of PbCl<small><sub>2</sub></small> to the multi-cycle sequential deposition to improve the absorber crystallinity at a lower annealing temperature of 150 °C, as evidenced by the XRD and PL analyses. The resulting PSC in a p–i–n structure yields a PCE of 18.5% with a cell area of 0.09 cm<small><sup>2</sup></small>. With the same deposition parameters, the cell area is scaled up to 0.36 cm<small><sup>2</sup></small>, achieving champion PCEs of 17.06%. This indicates the great potential of this technology for the commercialization of PSCs in the future.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 10","pages":" 2729-2737"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01744g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01744g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential thermal evaporation is an emerging technique for obtaining perovskite (PVK) photoactive materials for solar cell applications. Advantages include solvent-free processing, accurate stoichiometry control, and scalable processing. Nevertheless, the power conversion efficiency (PCE) of PVK solar cells (PSCs) fabricated by evaporation still lags behind that of solution-processed PSCs. Here, based on multi-cycle sequential thermal evaporation, we systematically investigate the effects of the post-deposition annealing temperature on the PVK properties in terms of surface morphology, opto-electronic properties, and device performance. We find that the average grain size increases to almost 1 μm and charge carrier mobilities exceed 50 cm2 V−1 s−1 when the annealing temperature is increased to 170 °C. We introduce a trace of PbCl2 to the multi-cycle sequential deposition to improve the absorber crystallinity at a lower annealing temperature of 150 °C, as evidenced by the XRD and PL analyses. The resulting PSC in a p–i–n structure yields a PCE of 18.5% with a cell area of 0.09 cm2. With the same deposition parameters, the cell area is scaled up to 0.36 cm2, achieving champion PCEs of 17.06%. This indicates the great potential of this technology for the commercialization of PSCs in the future.

p-i-n钙钛矿太阳能电池中顺序真空沉积钙钛矿的氯化物改进结晶
顺序热蒸发是一种新兴的获得钙钛矿(PVK)光活性材料的技术,用于太阳能电池。优点包括无溶剂处理,精确的化学计量控制和可扩展的处理。然而,蒸发法制备的PVK太阳能电池的功率转换效率(PCE)仍落后于溶液法制备的PSCs。本文基于多循环顺序热蒸发,系统地研究了沉积后退火温度对PVK表面形貌、光电性能和器件性能的影响。我们发现,当退火温度提高到170℃时,平均晶粒尺寸增加到近1 μm,载流子迁移率超过50 cm2 V−1 s−1。XRD和PL分析表明,在150°C的较低退火温度下,我们在多循环顺序沉积中引入了微量的PbCl2,以提高吸收剂的结晶度。在p-i-n结构中得到的PSC的PCE为18.5%,电池面积为0.09 cm2。在相同的沉积参数下,电池面积扩大到0.36 cm2,实现了17.06%的冠军pce。这表明了该技术在未来psc商业化方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信