He Wang;Yifeng Yang;Kaiyuan Wang;Qianhe Shao;Xinyu Duan;Xiaolong Chen;Kai Liu;Xiaoqiang Xiong;Junqing Meng;Bing He
{"title":"SBS Suppression Capability of Optimized Pseudo-Random Binary Sequence Phase Modulation in Multi-Stage Fiber Amplifiers","authors":"He Wang;Yifeng Yang;Kaiyuan Wang;Qianhe Shao;Xinyu Duan;Xiaolong Chen;Kai Liu;Xiaoqiang Xiong;Junqing Meng;Bing He","doi":"10.1109/JPHOT.2025.3566278","DOIUrl":null,"url":null,"abstract":"We demonstrate the capability to suppress stimulated Brillouin scattering (SBS) in a high-power all-fiber laser amplifier system using filtered and amplified pseudo-random binary sequence (PRBS) phase modulation techniques. Based on the time-dependent three-wave coupled SBS interaction equations in an amplifier model consisting of active fiber and passive fiber and spectral calculation of phase modulation, we numerically simulate the dependence of the normalized SBS threshold and the root-mean-square (RMS) linewidth on both the filter cutoff frequency and the phase modulation depth for filtered and amplified PRBS phase modulation at a fixed clock rate with different pattern lengths. PRBS9 is superior to other investigated patterns. A set of optimal pattern lengths, RMS modulation depths, and the ratio of the filter cutoff frequency to the clock rate are determined. Specific time-domain details of the variation of the RF signal with experimentally measured RMS modulation depth are shown. The dependence of different time-domain waveforms and their corresponding spectra and SBS thresholds on the RMS modulation depth is illustrated by theoretical predictions and experimental measurements, and the optimal value of the RMS modulation depth is demonstrated. Then, both the RMS linewidth of the optical spectra and the maximum normalized SBS threshold under the optimized parameters increase linearly with clock rate. While, with the further increase of the clock rate to ∼14 GHz, the SBS threshold reaches a saturation point when the maximum effective spectral linewidth is reached, where the spectral line spacing is half of the FWHM Brillouin linewidth, and the optimal spectral line spacing is not affected by the fiber length of the system. Eventually, a laser power output of 2.78 kW at an FWHM linewidth of 9.95 GHz is experimentally obtained.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981633","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10981633/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the capability to suppress stimulated Brillouin scattering (SBS) in a high-power all-fiber laser amplifier system using filtered and amplified pseudo-random binary sequence (PRBS) phase modulation techniques. Based on the time-dependent three-wave coupled SBS interaction equations in an amplifier model consisting of active fiber and passive fiber and spectral calculation of phase modulation, we numerically simulate the dependence of the normalized SBS threshold and the root-mean-square (RMS) linewidth on both the filter cutoff frequency and the phase modulation depth for filtered and amplified PRBS phase modulation at a fixed clock rate with different pattern lengths. PRBS9 is superior to other investigated patterns. A set of optimal pattern lengths, RMS modulation depths, and the ratio of the filter cutoff frequency to the clock rate are determined. Specific time-domain details of the variation of the RF signal with experimentally measured RMS modulation depth are shown. The dependence of different time-domain waveforms and their corresponding spectra and SBS thresholds on the RMS modulation depth is illustrated by theoretical predictions and experimental measurements, and the optimal value of the RMS modulation depth is demonstrated. Then, both the RMS linewidth of the optical spectra and the maximum normalized SBS threshold under the optimized parameters increase linearly with clock rate. While, with the further increase of the clock rate to ∼14 GHz, the SBS threshold reaches a saturation point when the maximum effective spectral linewidth is reached, where the spectral line spacing is half of the FWHM Brillouin linewidth, and the optimal spectral line spacing is not affected by the fiber length of the system. Eventually, a laser power output of 2.78 kW at an FWHM linewidth of 9.95 GHz is experimentally obtained.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.