Hierarchical Multistate Optimization Based on Bayesian Nested Improved Meta-Heuristic Algorithm for Reconfigurable Bandpass Filter

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Shi;Jiayan Gan;Jiancheng Dong;Xu Zhu;Bin Liu;Tao Yang;Sheng Wang;Jihong Shen
{"title":"Hierarchical Multistate Optimization Based on Bayesian Nested Improved Meta-Heuristic Algorithm for Reconfigurable Bandpass Filter","authors":"Jian Shi;Jiayan Gan;Jiancheng Dong;Xu Zhu;Bin Liu;Tao Yang;Sheng Wang;Jihong Shen","doi":"10.1109/LMWT.2025.3543515","DOIUrl":null,"url":null,"abstract":"This letter proposes a hierarchical multistate optimization (HMO) method for the microstrip reconfigurable bandpass filter (RBPF). HMO algorithm nests the inner global optimization algorithm within the outer global optimization algorithm. The Bayesian optimization (BO) algorithm is used to optimize the outer nontunable parameters, and the improved meta-heuristic algorithm is nested to optimize the tunable parameters. The proposed optimization method was applied to two microstrip RBPFs with seven fixed parameters, four sensitive tunable variables, and three tunable states. The method achieved a 42.1%–80.2% reduction in the loss function value, thereby validating its effectiveness.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 5","pages":"505-508"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909693/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a hierarchical multistate optimization (HMO) method for the microstrip reconfigurable bandpass filter (RBPF). HMO algorithm nests the inner global optimization algorithm within the outer global optimization algorithm. The Bayesian optimization (BO) algorithm is used to optimize the outer nontunable parameters, and the improved meta-heuristic algorithm is nested to optimize the tunable parameters. The proposed optimization method was applied to two microstrip RBPFs with seven fixed parameters, four sensitive tunable variables, and three tunable states. The method achieved a 42.1%–80.2% reduction in the loss function value, thereby validating its effectiveness.
基于贝叶斯嵌套改进元启发式算法的可重构带通滤波器分层多状态优化
本文提出了一种微带可重构带通滤波器(RBPF)的分层多状态优化(HMO)方法。HMO算法将内部全局优化算法嵌套在外部全局优化算法中。采用贝叶斯优化算法对外部不可调参数进行优化,并嵌套改进的元启发式算法对可调参数进行优化。将所提出的优化方法应用于两个具有7个固定参数、4个敏感可调变量和3个可调状态的微带rbpf。该方法的损失函数值降低了42.1% ~ 80.2%,从而验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信