A Scalable ANN-Based Large-Signal Model for GaN HEMTs Using Transfer Learning

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Huang;Shuman Mao;Wenhao Zheng;Bowen Tang;Huanpeng Wang;Qingzhi Wu;Min Tang;Yuehang Xu
{"title":"A Scalable ANN-Based Large-Signal Model for GaN HEMTs Using Transfer Learning","authors":"Lei Huang;Shuman Mao;Wenhao Zheng;Bowen Tang;Huanpeng Wang;Qingzhi Wu;Min Tang;Yuehang Xu","doi":"10.1109/LMWT.2025.3546453","DOIUrl":null,"url":null,"abstract":"Traditional linear scaling artificial neural network (ANN)-based compact models face significant challenges in achieving high accuracy for device modeling. To overcome this limitation, a transfer-learning (TL)-assisted approach is proposed to develop a scalable ANN-based model that incorporates nonlinear scaling of intrinsic parameters. Unlike the linear scaling method, the weights and biases of the output layer are selected and non-linearly scaled for devices with varying gate widths and finger numbers through transfer learning. To effectively integrate these nonlinear scaling parameters into the model, a nonlinear regression technique is employed. The validation results demonstrate that the proposed method provides accurate characterization of both the S-parameters and large-signal performance. Notably, in power sweep evaluations, the proposed method achieves an improvement of more than 8% in power-added efficiency (PAE) accuracy compared with the conventional linear scaling approach.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 5","pages":"501-504"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919054/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional linear scaling artificial neural network (ANN)-based compact models face significant challenges in achieving high accuracy for device modeling. To overcome this limitation, a transfer-learning (TL)-assisted approach is proposed to develop a scalable ANN-based model that incorporates nonlinear scaling of intrinsic parameters. Unlike the linear scaling method, the weights and biases of the output layer are selected and non-linearly scaled for devices with varying gate widths and finger numbers through transfer learning. To effectively integrate these nonlinear scaling parameters into the model, a nonlinear regression technique is employed. The validation results demonstrate that the proposed method provides accurate characterization of both the S-parameters and large-signal performance. Notably, in power sweep evaluations, the proposed method achieves an improvement of more than 8% in power-added efficiency (PAE) accuracy compared with the conventional linear scaling approach.
基于迁移学习的基于可扩展ann的GaN hemt大信号模型
传统的基于线性缩放人工神经网络(ANN)的紧凑模型在实现器件建模的高精度方面面临重大挑战。为了克服这一限制,提出了一种迁移学习(TL)辅助方法来开发一个可扩展的基于人工神经网络的模型,该模型包含了内在参数的非线性缩放。与线性缩放方法不同,输出层的权值和偏置通过迁移学习选择,并对具有不同门宽和手指数的设备进行非线性缩放。为了有效地将这些非线性标度参数整合到模型中,采用了非线性回归技术。验证结果表明,该方法能够准确表征s参数和大信号性能。值得注意的是,在功率扫描评估中,与传统的线性缩放方法相比,该方法的功率附加效率(PAE)精度提高了8%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信