Prescribed-time fault-tolerant consensus for uncertain nonlinear multi-agent systems

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Vijay Kumar Singh, Jagannathan Sarangapani
{"title":"Prescribed-time fault-tolerant consensus for uncertain nonlinear multi-agent systems","authors":"Vijay Kumar Singh,&nbsp;Jagannathan Sarangapani","doi":"10.1016/j.ifacsc.2025.100313","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving consensus within a user-defined time frame for uncertain nonlinear systems is both crucial and challenging. To tackle this issue, we propose an adaptive consensus protocol that utilizes a radial basis function neural network to handle unknown nonlinearities and actuator faults. Unlike traditional finite-time or fixed-time consensus methods, our approach employs continuous, time-varying feedback to guarantee convergence within the desired time. The proposed strategy ensures that all closed-loop signals of the system remain bounded, achieving consensus within the prescribed time. The effectiveness of the proposed control strategy is demonstrated through a simulation example of phase synchronization in a power system.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"32 ","pages":"Article 100313"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving consensus within a user-defined time frame for uncertain nonlinear systems is both crucial and challenging. To tackle this issue, we propose an adaptive consensus protocol that utilizes a radial basis function neural network to handle unknown nonlinearities and actuator faults. Unlike traditional finite-time or fixed-time consensus methods, our approach employs continuous, time-varying feedback to guarantee convergence within the desired time. The proposed strategy ensures that all closed-loop signals of the system remain bounded, achieving consensus within the prescribed time. The effectiveness of the proposed control strategy is demonstrated through a simulation example of phase synchronization in a power system.
不确定非线性多智能体系统的规定时间容错一致性
对于不确定的非线性系统,在用户定义的时间框架内达成共识既关键又具有挑战性。为了解决这一问题,我们提出了一种自适应共识协议,该协议利用径向基函数神经网络来处理未知非线性和执行器故障。与传统的有限时间或固定时间共识方法不同,我们的方法采用连续的时变反馈来保证在期望时间内收敛。所提出的策略保证了系统的所有闭环信号保持有界,在规定的时间内达到一致。通过一个电力系统相位同步仿真实例,验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信