{"title":"Solar energy–based sonophotocatalysis for intensified wastewater treatment","authors":"Manisha V Bagal , Parag R Gogate","doi":"10.1016/j.coche.2025.101145","DOIUrl":null,"url":null,"abstract":"<div><div>Sonophotocatalysis has gained attention recently for the effective treatment of wastewater, mainly based on the expected synergy from sonication and photocatalysis. The current work focuses on the guidelines related to the mechanisms for synergy, optimization of operating parameters, and reactor designs. The influence of operational parameters, including pH (acidic or alkaline conditions), pollutant concentration, catalyst loading, temperature, and irradiation duration, on degradation extent has been explained. In addition, the effect of reactor characteristics such as ultrasonic frequency and power has been discussed. A significantly higher synergistic pollutant removal has indeed been observed in sonophotocatalysis compared to conventional treatment methods. The incorporation of various doping materials and catalyst supports further enhances degradation efficiency. The expected advancement underscores the potential of sonophotocatalysis as a promising wastewater treatment technology, particularly for the effective elimination of recalcitrant organic contaminants. The review also presents the challenges of the current process and offers recommendations for its future expansion.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"49 ","pages":"Article 101145"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sonophotocatalysis has gained attention recently for the effective treatment of wastewater, mainly based on the expected synergy from sonication and photocatalysis. The current work focuses on the guidelines related to the mechanisms for synergy, optimization of operating parameters, and reactor designs. The influence of operational parameters, including pH (acidic or alkaline conditions), pollutant concentration, catalyst loading, temperature, and irradiation duration, on degradation extent has been explained. In addition, the effect of reactor characteristics such as ultrasonic frequency and power has been discussed. A significantly higher synergistic pollutant removal has indeed been observed in sonophotocatalysis compared to conventional treatment methods. The incorporation of various doping materials and catalyst supports further enhances degradation efficiency. The expected advancement underscores the potential of sonophotocatalysis as a promising wastewater treatment technology, particularly for the effective elimination of recalcitrant organic contaminants. The review also presents the challenges of the current process and offers recommendations for its future expansion.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.