Switching the product selectivity from methane to methanol in CO2 hydrogenation via Cu-modified vacancy engineering at MoS2 edge sites

IF 13.1 1区 化学 Q1 Energy
Guanghui Zhang , Xin Meng , Hao Wang , Zhiqun Wang , Hui Gao , Mingrui Wang , Chunshan Song , Xinwen Guo
{"title":"Switching the product selectivity from methane to methanol in CO2 hydrogenation via Cu-modified vacancy engineering at MoS2 edge sites","authors":"Guanghui Zhang ,&nbsp;Xin Meng ,&nbsp;Hao Wang ,&nbsp;Zhiqun Wang ,&nbsp;Hui Gao ,&nbsp;Mingrui Wang ,&nbsp;Chunshan Song ,&nbsp;Xinwen Guo","doi":"10.1016/j.jechem.2025.04.038","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic hydrogenation of carbon dioxide (CO<sub>2</sub>) to methanol (CH<sub>3</sub>OH) represents a promising strategy for mitigating carbon emissions and closing the carbon cycle. This study demonstrates that the incorporation of Cu into MoS<sub>2</sub> catalysts significantly enhances methanol selectivity and productivity. Through a combination of transmission electron microscope, X-ray diffraction, Raman, electron paramagnetic resonance, X-ray photoelectron spectroscopy, diffuse reflectance Infrared Fourier transform spectroscopy, X-ray absorption spectroscopy, temperature-programmed desorption, and kinetic analysis, we reveal that Cu modifies edge sulfur vacancies, thereby suppressing methane formation and promoting methanol synthesis. At 220 °C and 5 MPa, the 2%Cu/MoS<sub>2</sub> catalyst achieves 85.5% selectivity toward CH<sub>3</sub>OH, and the methanol formation rate reaches 7.88 mmol g<sup>−</sup><sup>1</sup><sub>cat</sub> h<sup>−1</sup> (0.256 mmol <span><math><mrow><msubsup><mrow><mi>m</mi></mrow><mrow><msub><mrow></mrow><mrow><msub><mrow><mi>MoS</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></mrow><mrow><mo>-</mo><mn>2</mn></mrow></msubsup></mrow></math></span> h<sup>−1</sup>), representing the highest performance among MoS<sub>2</sub>-based catalysts under comparable conditions. This work provides an efficient and potentially scalable approach for designing advanced MoS<sub>2</sub>-based catalysts for CO<sub>2</sub> hydrogenation.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 286-296"},"PeriodicalIF":13.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625003535","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic hydrogenation of carbon dioxide (CO2) to methanol (CH3OH) represents a promising strategy for mitigating carbon emissions and closing the carbon cycle. This study demonstrates that the incorporation of Cu into MoS2 catalysts significantly enhances methanol selectivity and productivity. Through a combination of transmission electron microscope, X-ray diffraction, Raman, electron paramagnetic resonance, X-ray photoelectron spectroscopy, diffuse reflectance Infrared Fourier transform spectroscopy, X-ray absorption spectroscopy, temperature-programmed desorption, and kinetic analysis, we reveal that Cu modifies edge sulfur vacancies, thereby suppressing methane formation and promoting methanol synthesis. At 220 °C and 5 MPa, the 2%Cu/MoS2 catalyst achieves 85.5% selectivity toward CH3OH, and the methanol formation rate reaches 7.88 mmol g1cat h−1 (0.256 mmol mMoS2-2 h−1), representing the highest performance among MoS2-based catalysts under comparable conditions. This work provides an efficient and potentially scalable approach for designing advanced MoS2-based catalysts for CO2 hydrogenation.
利用cu修饰的二硫化钼边缘空位工程,改变CO2加氢过程中甲烷到甲醇的选择性
二氧化碳(CO2)催化加氢制甲醇(CH3OH)是一种很有前途的减少碳排放和关闭碳循环的策略。研究表明,在二硫化钼催化剂中加入Cu可显著提高甲醇的选择性和产率。通过透射电镜、x射线衍射、拉曼光谱、电子顺磁共振、x射线光电子能谱、漫反射红外傅立叶变换光谱、x射线吸收光谱、程序升温解吸和动力学分析等综合手段,揭示了Cu修饰了边缘硫空位,从而抑制了甲烷的生成,促进了甲醇的合成。在220°C和5 MPa条件下,2%Cu/MoS2催化剂对CH3OH的选择性达到85.5%,甲醇生成率达到7.88 mmol g−1cat h−1 (0.256 mmol mMoS2-2 h−1),是同类条件下MoS2基催化剂中性能最高的。这项工作为设计先进的基于二硫化钼的CO2加氢催化剂提供了一种高效且具有潜在可扩展性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信