A. Gil-Gamboa, J.F. Torres, F. Martínez-Álvarez, A. Troncoso
{"title":"Energy-efficient transfer learning for water consumption forecasting","authors":"A. Gil-Gamboa, J.F. Torres, F. Martínez-Álvarez, A. Troncoso","doi":"10.1016/j.suscom.2025.101130","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence is expanding at an unprecedented rate due to the numerous advantages it provides to all types of businesses and industries. Water utilities are adopting artificial intelligence models to optimize water management in cities nowadays. However, the substantial computational demands of artificial intelligence present challenges, particularly regarding energy consumption and environmental impact. This paper addresses this problem by proposing a transfer learning approach for water consumption forecasting that reduces computational time, energy usage, and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. The proposed methodology consists in developing a transfer learning approach based on a deep learning model already trained for a task with similar characteristics such as predicting electricity consumption. Thus, a pre-trained deep learning model designed for electricity consumption prediction is adapted to the water consumption domain, leveraging shared characteristics between these tasks. Experiments are conducted to determine the optimal amount of knowledge transfer and compare the performance of this approach with other state-of-the-art time-series forecasting models. Using real data from a water company in Spain, the transfer learning model achieves a similar or better accuracy than the other methods, while demonstrating significantly lower computational times, energy consumption and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. In addition, a scalability analysis has been conducted leading to the conclusion that the proposed transfer learning model is highly suitable to deal with big data. These findings highlight the potential of transfer learning as a sustainable and scalable solution for big data challenges in water management systems.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101130"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000502","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence is expanding at an unprecedented rate due to the numerous advantages it provides to all types of businesses and industries. Water utilities are adopting artificial intelligence models to optimize water management in cities nowadays. However, the substantial computational demands of artificial intelligence present challenges, particularly regarding energy consumption and environmental impact. This paper addresses this problem by proposing a transfer learning approach for water consumption forecasting that reduces computational time, energy usage, and CO emissions. The proposed methodology consists in developing a transfer learning approach based on a deep learning model already trained for a task with similar characteristics such as predicting electricity consumption. Thus, a pre-trained deep learning model designed for electricity consumption prediction is adapted to the water consumption domain, leveraging shared characteristics between these tasks. Experiments are conducted to determine the optimal amount of knowledge transfer and compare the performance of this approach with other state-of-the-art time-series forecasting models. Using real data from a water company in Spain, the transfer learning model achieves a similar or better accuracy than the other methods, while demonstrating significantly lower computational times, energy consumption and CO emissions. In addition, a scalability analysis has been conducted leading to the conclusion that the proposed transfer learning model is highly suitable to deal with big data. These findings highlight the potential of transfer learning as a sustainable and scalable solution for big data challenges in water management systems.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.