{"title":"Relation between the H-rank of a mixed graph and the girth of its underlying graph","authors":"Suliman Khan","doi":"10.1016/j.dam.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> be a mixed graph obtained from a simple graph <span><math><mi>Γ</mi></math></span> with the same vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></mrow></math></span> and an edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></mrow></math></span> containing undirected edges and arcs. Let <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> be the (first kind of) Hermitian adjacency matrix of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup></math></span>. The <span><math><mi>H</mi></math></span>-rank of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup></math></span> is the rank of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>H</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The girth of <span><math><mi>Γ</mi></math></span> is the length of the shortest cycle in <span><math><mi>Γ</mi></math></span>, dented by <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></mrow></math></span> (or simply by <span><math><mi>g</mi></math></span>). In this paper, we show that under some conditions the <span><math><mi>H</mi></math></span>-rank of a mixed graph is equal to the girth of its underlying graph. Moreover, we characterize mixed graphs with <span><math><mi>H</mi></math></span>-rank <span><math><mrow><mi>g</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>g</mi><mo>+</mo><mn>2</mn></mrow></math></span>, distinct from the characterization of <span><math><mi>T</mi></math></span>-gain graphs provided by Khan (2024).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 239-248"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002495","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a mixed graph obtained from a simple graph with the same vertex set and an edge set containing undirected edges and arcs. Let be the (first kind of) Hermitian adjacency matrix of . The -rank of is the rank of , denoted by . The girth of is the length of the shortest cycle in , dented by (or simply by ). In this paper, we show that under some conditions the -rank of a mixed graph is equal to the girth of its underlying graph. Moreover, we characterize mixed graphs with -rank and , distinct from the characterization of -gain graphs provided by Khan (2024).
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.