Relation between the H-rank of a mixed graph and the girth of its underlying graph

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Suliman Khan
{"title":"Relation between the H-rank of a mixed graph and the girth of its underlying graph","authors":"Suliman Khan","doi":"10.1016/j.dam.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> be a mixed graph obtained from a simple graph <span><math><mi>Γ</mi></math></span> with the same vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></mrow></math></span> and an edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></mrow></math></span> containing undirected edges and arcs. Let <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> be the (first kind of) Hermitian adjacency matrix of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup></math></span>. The <span><math><mi>H</mi></math></span>-rank of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup></math></span> is the rank of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>H</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mi>π</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The girth of <span><math><mi>Γ</mi></math></span> is the length of the shortest cycle in <span><math><mi>Γ</mi></math></span>, dented by <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></mrow></math></span> (or simply by <span><math><mi>g</mi></math></span>). In this paper, we show that under some conditions the <span><math><mi>H</mi></math></span>-rank of a mixed graph is equal to the girth of its underlying graph. Moreover, we characterize mixed graphs with <span><math><mi>H</mi></math></span>-rank <span><math><mrow><mi>g</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>g</mi><mo>+</mo><mn>2</mn></mrow></math></span>, distinct from the characterization of <span><math><mi>T</mi></math></span>-gain graphs provided by Khan (2024).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 239-248"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002495","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let Σπ=(V(Σπ),E(Σπ)) be a mixed graph obtained from a simple graph Γ with the same vertex set V(Γ) and an edge set E(Γ) containing undirected edges and arcs. Let HA(Σπ) be the (first kind of) Hermitian adjacency matrix of Σπ. The H-rank of Σπ is the rank of HA(Σπ), denoted by rH(Σπ). The girth of Γ is the length of the shortest cycle in Γ, dented by g(Γ) (or simply by g). In this paper, we show that under some conditions the H-rank of a mixed graph is equal to the girth of its underlying graph. Moreover, we characterize mixed graphs with H-rank g1 and g+2, distinct from the characterization of T-gain graphs provided by Khan (2024).
混合图的h秩与其底层图的周长之间的关系
设Σπ=(V(Σπ),E(Σπ))是由一个简单图Γ得到的混合图,该图具有相同的顶点集V(Γ)和包含无向边和圆弧的边集E(Γ)。设HA(Σπ)是Σπ的(第一类)厄米邻接矩阵。Σπ的H-rank为HA(Σπ)的rank,用rH(Σπ)表示。Γ的周长是Γ中最短周期的长度,用g(Γ)缩进(或简单地用g)。本文证明了在某些条件下,混合图的h秩等于其底层图的周长。此外,我们描述了h阶为g−1和g+2的混合图,与Khan(2024)提供的t增益图的表征不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信