{"title":"Camel urine-priming induced defense mechanisms in barley against Fusarium graminearum","authors":"Layla Yousif Abdullah Al Hijab","doi":"10.1016/j.bcab.2025.103606","DOIUrl":null,"url":null,"abstract":"<div><div><em>Fusarium graminearum</em> poses a major threat to barley production worldwide. While seed priming is a promising strategy to enhance plant defense, the use of unconventional priming agents remains underexplored. This study investigates the protective effects of pre-infection camel urine seed priming on barley seedlings challenged with <em>Fusarium graminearum</em>, focusing on growth, disease resistance, oxidative stress, and defense-related responses. Barley grains were primed with camel urine and grown in both <em>Fusarium</em>-infested and uninfested soils. <em>Fusarium</em> infection initially triggered a sharp increase in oxidative stress markers reflecting an early oxidative burst commonly associated with defense signaling. However, in hydro-primed seedlings, this response persisted, leading to sustained oxidative damage and growth suppression. In contrast, camel urine priming modulated the oxidative burst effectively, initially permitting H<sub>2</sub>O<sub>2</sub> accumulation for defense activation, followed by a rapid decline, resulting in an 84.53 % reduction in disease severity and maintenance of seedling growth under infection. This was accompanied by enhanced antioxidant defenses, as indicated by significantly increased activities of antioxidant enzymes, and a 145 % increase in total antioxidant capacity compared to control. Camel urine priming also showed a reduction in shikimic acid levels under infection, suggesting increased metabolic flux toward the phenylpropanoid pathway. Thus, phenylalanine ammonia-lyase activity, phenolic compounds, and flavonoids were significantly elevated. Antifungal enzymes, β-glucanase and chitinase, also remained high in camel urine-primed seedlings, in contrast to their sharp decline in hydro-primed controls. These findings highlight camel urine priming as a promising, sustainable approach for managing <em>Fusarium</em> in barley.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"66 ","pages":"Article 103606"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125001197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium graminearum poses a major threat to barley production worldwide. While seed priming is a promising strategy to enhance plant defense, the use of unconventional priming agents remains underexplored. This study investigates the protective effects of pre-infection camel urine seed priming on barley seedlings challenged with Fusarium graminearum, focusing on growth, disease resistance, oxidative stress, and defense-related responses. Barley grains were primed with camel urine and grown in both Fusarium-infested and uninfested soils. Fusarium infection initially triggered a sharp increase in oxidative stress markers reflecting an early oxidative burst commonly associated with defense signaling. However, in hydro-primed seedlings, this response persisted, leading to sustained oxidative damage and growth suppression. In contrast, camel urine priming modulated the oxidative burst effectively, initially permitting H2O2 accumulation for defense activation, followed by a rapid decline, resulting in an 84.53 % reduction in disease severity and maintenance of seedling growth under infection. This was accompanied by enhanced antioxidant defenses, as indicated by significantly increased activities of antioxidant enzymes, and a 145 % increase in total antioxidant capacity compared to control. Camel urine priming also showed a reduction in shikimic acid levels under infection, suggesting increased metabolic flux toward the phenylpropanoid pathway. Thus, phenylalanine ammonia-lyase activity, phenolic compounds, and flavonoids were significantly elevated. Antifungal enzymes, β-glucanase and chitinase, also remained high in camel urine-primed seedlings, in contrast to their sharp decline in hydro-primed controls. These findings highlight camel urine priming as a promising, sustainable approach for managing Fusarium in barley.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.