{"title":"Intrinsic clustering of flagellar basal body proteins in E. coli: A self-organization mechanism for assembly and regulation","authors":"Yun-Sing Sung, De-Fa Hong, Yi-Ren Chang","doi":"10.1016/j.bbrep.2025.102051","DOIUrl":null,"url":null,"abstract":"<div><div>The assembly and spatial organization of flagellar basal bodies in <em>Escherichia coli</em> are crucial for motility and chemotaxis. Using fluorescence and single-molecule microscopy, we demonstrate that key basal body proteins, FliF and FlhA, self-organize into clusters from low to high expression conditions. Rather than forming new basal bodies, excess proteins accumulate around pre-existing structures, suggesting an autocatalytic mechanism. It is confirmed that clustering occurs even at low protein levels, indicating an intrinsic organizational principle rather than an artifact of overexpression. Fluorescence recovery after photobleaching (FRAP) revealed dynamic protein exchange within clusters, supporting a diffusion-capture model. Single-molecule analysis showed that FlhA actively remodels clusters, while FliF stabilizes them. 3D imaging suggested that basal body positioning optimizes flagellar distribution for efficient motility. These findings highlight a robust mechanism that regulates basal body positioning and flagellar assembly, ensuring adaptability to varying cellular conditions.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102051"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The assembly and spatial organization of flagellar basal bodies in Escherichia coli are crucial for motility and chemotaxis. Using fluorescence and single-molecule microscopy, we demonstrate that key basal body proteins, FliF and FlhA, self-organize into clusters from low to high expression conditions. Rather than forming new basal bodies, excess proteins accumulate around pre-existing structures, suggesting an autocatalytic mechanism. It is confirmed that clustering occurs even at low protein levels, indicating an intrinsic organizational principle rather than an artifact of overexpression. Fluorescence recovery after photobleaching (FRAP) revealed dynamic protein exchange within clusters, supporting a diffusion-capture model. Single-molecule analysis showed that FlhA actively remodels clusters, while FliF stabilizes them. 3D imaging suggested that basal body positioning optimizes flagellar distribution for efficient motility. These findings highlight a robust mechanism that regulates basal body positioning and flagellar assembly, ensuring adaptability to varying cellular conditions.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.