Renbo Shi , Wei Shan , Richard Evans , Qingjin Wang
{"title":"Artificial intelligence-driven energy technology innovation: Dynamic impact and mechanism exploration","authors":"Renbo Shi , Wei Shan , Richard Evans , Qingjin Wang","doi":"10.1016/j.eneco.2025.108541","DOIUrl":null,"url":null,"abstract":"<div><div>Energy Technology Innovation (ETI) has received considerable attention in recent decades as firms strive to comply with pollution regulations and advance green transformation. This study investigates the dynamic impact of Artificial Intelligence (AI) on firm-level ETI and the mechanisms driving this relationship. The results show that AI positively contributes to ETI, although its effects exhibit a time lag, with the long-term impact being more significant. Specifically, AI exerts a more pronounced positive impact on renewable ETI compared to traditional ETI, guiding firms' innovation towards cleaner energy sources. The promotion of ETI by AI is found to be stronger in heavily polluted industries and geographical regions with greater openness. In addition, mechanism analysis demonstrates that AI primarily promotes ETI through enhanced Research and Development (R&D) activities, factor allocation effects, and increased financial opportunities. Furthermore, these AI-driven advancements in ETI contribute to improved energy efficiency. This study provides valuable guidance for firms seeking to effectively integrate AI into their ETI strategies and holds significant theoretical and practical implications for accelerating energy transformation.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"147 ","pages":"Article 108541"},"PeriodicalIF":13.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988325003652","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy Technology Innovation (ETI) has received considerable attention in recent decades as firms strive to comply with pollution regulations and advance green transformation. This study investigates the dynamic impact of Artificial Intelligence (AI) on firm-level ETI and the mechanisms driving this relationship. The results show that AI positively contributes to ETI, although its effects exhibit a time lag, with the long-term impact being more significant. Specifically, AI exerts a more pronounced positive impact on renewable ETI compared to traditional ETI, guiding firms' innovation towards cleaner energy sources. The promotion of ETI by AI is found to be stronger in heavily polluted industries and geographical regions with greater openness. In addition, mechanism analysis demonstrates that AI primarily promotes ETI through enhanced Research and Development (R&D) activities, factor allocation effects, and increased financial opportunities. Furthermore, these AI-driven advancements in ETI contribute to improved energy efficiency. This study provides valuable guidance for firms seeking to effectively integrate AI into their ETI strategies and holds significant theoretical and practical implications for accelerating energy transformation.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.