The role of the toxin effect in the predator-prey system with prey-taxis

IF 1.2 3区 数学 Q1 MATHEMATICS
Guiling Wu , Jingyu Li , Lu Xu
{"title":"The role of the toxin effect in the predator-prey system with prey-taxis","authors":"Guiling Wu ,&nbsp;Jingyu Li ,&nbsp;Lu Xu","doi":"10.1016/j.jmaa.2025.129639","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the population dynamics of a predator-prey model with the effect of prey toxicity, which describes the phenomena that the preys release their own toxins to predators as a defensive measure for survival. Compared with the classical predator-prey system, this system has stronger nonlinear coupling structure due to the inclusion of a prey toxicity. By delicate decoupling energy estimates, we prove that this system possesses a globally bounded classical solution in a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></math></span> with homogeneous Neumann boundary conditions. Furthermore, we find a threshold to classify the global asymptotic stability of the prey-only steady state and the coexistence steady state by constructing suitable Lyapunov functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129639"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004202","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the population dynamics of a predator-prey model with the effect of prey toxicity, which describes the phenomena that the preys release their own toxins to predators as a defensive measure for survival. Compared with the classical predator-prey system, this system has stronger nonlinear coupling structure due to the inclusion of a prey toxicity. By delicate decoupling energy estimates, we prove that this system possesses a globally bounded classical solution in a smooth bounded domain ΩRN(N2) with homogeneous Neumann boundary conditions. Furthermore, we find a threshold to classify the global asymptotic stability of the prey-only steady state and the coexistence steady state by constructing suitable Lyapunov functions.
毒素效应在具有趋向性的捕食者-猎物系统中的作用
本文研究了具有猎物毒性效应的捕食者-猎物模型的种群动态,该模型描述了猎物向捕食者释放自己的毒素作为生存的防御措施的现象。与经典的捕食者-食饵系统相比,由于包含了食饵毒性,该系统具有更强的非线性耦合结构。通过精细的解耦能量估计,我们证明了该系统在光滑有界域Ω∧RN(N≥2)中具有齐次诺伊曼边界条件具有全局有界经典解。在此基础上,通过构造合适的Lyapunov函数,找到了一个阈值来对全局渐近稳定和共存稳定进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信