Elias Wölfer , Christoph Burkhardt , Francis Nimmo , Thorsten Kleine
{"title":"Origin of moderately volatile elements in Earth inferred from mass-dependent Ge isotope variations among chondrites","authors":"Elias Wölfer , Christoph Burkhardt , Francis Nimmo , Thorsten Kleine","doi":"10.1016/j.epsl.2025.119435","DOIUrl":null,"url":null,"abstract":"<div><div>The bulk silicate Earth (BSE) is depleted in moderately volatile elements, indicating Earth formed from a mixture of volatile-rich and -poor materials. To better constrain the origin and nature of Earth's volatile-rich building blocks, we determined the mass-dependent isotope compositions of Ge in carbonaceous (CC) and enstatite chondrites. We find that, similar to other moderately volatile elements, the Ge isotope variations among the chondrites reflect mixing between volatile-rich, isotopically heavy matrix and volatile-poor, isotopically light chondrules. The Ge isotope composition of the BSE is within the chondritic range and can be accounted for as a ∼2:1 mixture of CI and enstatite chondrite-derived Ge. This mixing ratio appears to be distinct from the ∼1:2 ratio inferred for Zn, reflecting the different geochemical behavior of Ge (siderophile) and Zn (lithophile), and suggesting the late-stage addition of volatile-rich CC materials to Earth. On dynamical grounds it has been argued that Earth accreted CC material through a few Moon-sized embryos, in which case the Ge isotope results imply that these objects were volatile-rich, presumably because they were either undifferentiated or accreted volatile-rich objects themselves before being accreted by Earth.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"663 ","pages":"Article 119435"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25002341","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The bulk silicate Earth (BSE) is depleted in moderately volatile elements, indicating Earth formed from a mixture of volatile-rich and -poor materials. To better constrain the origin and nature of Earth's volatile-rich building blocks, we determined the mass-dependent isotope compositions of Ge in carbonaceous (CC) and enstatite chondrites. We find that, similar to other moderately volatile elements, the Ge isotope variations among the chondrites reflect mixing between volatile-rich, isotopically heavy matrix and volatile-poor, isotopically light chondrules. The Ge isotope composition of the BSE is within the chondritic range and can be accounted for as a ∼2:1 mixture of CI and enstatite chondrite-derived Ge. This mixing ratio appears to be distinct from the ∼1:2 ratio inferred for Zn, reflecting the different geochemical behavior of Ge (siderophile) and Zn (lithophile), and suggesting the late-stage addition of volatile-rich CC materials to Earth. On dynamical grounds it has been argued that Earth accreted CC material through a few Moon-sized embryos, in which case the Ge isotope results imply that these objects were volatile-rich, presumably because they were either undifferentiated or accreted volatile-rich objects themselves before being accreted by Earth.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.