Sub-10 nm energy-efficient tunnel FETs based on MoSi2N4 monolayer

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hamidreza Ghanbari Khorram , Samad Sheikhaei , Shoeib Babaee Touski , Alireza Kokabi
{"title":"Sub-10 nm energy-efficient tunnel FETs based on MoSi2N4 monolayer","authors":"Hamidreza Ghanbari Khorram ,&nbsp;Samad Sheikhaei ,&nbsp;Shoeib Babaee Touski ,&nbsp;Alireza Kokabi","doi":"10.1016/j.jpcs.2025.112796","DOIUrl":null,"url":null,"abstract":"<div><div>The MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayer is investigated as a channel material for sub-10 nm Tunnel Field-Effect Transistors (TFETs) to overcome the limitations of CMOS technology in power consumption and scaling. Following the Non-Equilibrium Green’s Function (NEGF) formalism, the study investigates key performance parameters that comprise ON-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>), OFF-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>OFF</mtext></mrow></msub></math></span>), ON/OFF current ratio, and sub-threshold swing (<span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span>). Tensile strain (+2%) enhances <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>, while compressive strain (-2%) reduces <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>OFF</mtext></mrow></msub></math></span> significantly, leading to a very high ON/OFF ratio. The <span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span> is measured around 14 mV/dec below the Boltzmann limit of conventional FETs. The <span><math><mi>n</mi></math></span>-TFET and <span><math><mi>p</mi></math></span>-TFET structures are explored through I–V characteristics, and an inverter gate is examined, demonstrating the potential of the material for logic applications. The obtained low OFF-current and <span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span> values for sub-10 nm channel length suggest that MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based TFET is a promising option for the next-generation nanoelectronics with high performance, low static power consumption, and energy efficiency.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"206 ","pages":"Article 112796"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002483","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The MoSi2N4 monolayer is investigated as a channel material for sub-10 nm Tunnel Field-Effect Transistors (TFETs) to overcome the limitations of CMOS technology in power consumption and scaling. Following the Non-Equilibrium Green’s Function (NEGF) formalism, the study investigates key performance parameters that comprise ON-state current (ION), OFF-state current (IOFF), ON/OFF current ratio, and sub-threshold swing (SS). Tensile strain (+2%) enhances ION, while compressive strain (-2%) reduces IOFF significantly, leading to a very high ON/OFF ratio. The SS is measured around 14 mV/dec below the Boltzmann limit of conventional FETs. The n-TFET and p-TFET structures are explored through I–V characteristics, and an inverter gate is examined, demonstrating the potential of the material for logic applications. The obtained low OFF-current and SS values for sub-10 nm channel length suggest that MoSi2N4-based TFET is a promising option for the next-generation nanoelectronics with high performance, low static power consumption, and energy efficiency.
基于MoSi2N4单层的亚10nm节能隧道场效应管
研究了MoSi2N4单层作为亚10nm隧道场效应晶体管(tfet)的沟道材料,以克服CMOS技术在功耗和缩放方面的限制。遵循非平衡格林函数(NEGF)形式,该研究调查了包括通状态电流(ION)、关状态电流(IOFF)、开/关电流比和亚阈值摆幅(SS)在内的关键性能参数。拉伸应变(+2%)增强离子,而压缩应变(-2%)显著降低IOFF,导致非常高的ON/OFF比。SS的测量值约为14 mV/dec,低于传统fet的玻尔兹曼极限。通过I-V特性探索了n-TFET和p-TFET结构,并检查了逆变器栅极,展示了该材料在逻辑应用中的潜力。在低于10 nm的通道长度下获得的低关断电流和SS值表明,基于mosi2n4的TFET具有高性能,低静态功耗和能源效率,是下一代纳米电子学的有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信