Xue Li , Xu Zhang , Haizhen Guo , Zhetao Li , Lei Han , Sheng Wang
{"title":"Photo-activatable prodrug nanoparticles for reactive oxygen species amplification and cooperative cancer therapy","authors":"Xue Li , Xu Zhang , Haizhen Guo , Zhetao Li , Lei Han , Sheng Wang","doi":"10.1016/j.colsurfb.2025.114775","DOIUrl":null,"url":null,"abstract":"<div><div>Photodynamic therapy (PDT), as a minimally invasive cancer therapy, demonstrates certain advantages in treating superficial tumors. However, it often faces challenges such as low reactive oxygen species (ROS) generation efficiency and non-targeted distribution of photosensitizers. The combination of chemotherapy and PDT can address the limitations of single modal therapies and improve therapeutic outcomes. In this work, we design a prodrug-based nanomedicine that can achieve photo-activated cascade drug release. Under 660 nm laser irradiation, the generated singlet oxygen can trigger the release of chemotherapeutic agent chlorambucil, cinnamaldehyde and quinone methyl. Chlorambucil can exert anti-tumor effects and cinnamaldehyde can increase intracellular hydrogen peroxide levels, while quinone methyl can consume intracellular glutathione. This process ultimately results in the amplification of ROS signals and further activation of prodrugs. This nanomedicine exhibits the ability to amplify oxidative stress and potent anticancer activity. <em>In vivo</em> experiments show that the nanomedicine can effectively inhibit tumor growth. This work provides a promising mutually beneficial strategy for achieving cooperative cancer therapy.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114775"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002826","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT), as a minimally invasive cancer therapy, demonstrates certain advantages in treating superficial tumors. However, it often faces challenges such as low reactive oxygen species (ROS) generation efficiency and non-targeted distribution of photosensitizers. The combination of chemotherapy and PDT can address the limitations of single modal therapies and improve therapeutic outcomes. In this work, we design a prodrug-based nanomedicine that can achieve photo-activated cascade drug release. Under 660 nm laser irradiation, the generated singlet oxygen can trigger the release of chemotherapeutic agent chlorambucil, cinnamaldehyde and quinone methyl. Chlorambucil can exert anti-tumor effects and cinnamaldehyde can increase intracellular hydrogen peroxide levels, while quinone methyl can consume intracellular glutathione. This process ultimately results in the amplification of ROS signals and further activation of prodrugs. This nanomedicine exhibits the ability to amplify oxidative stress and potent anticancer activity. In vivo experiments show that the nanomedicine can effectively inhibit tumor growth. This work provides a promising mutually beneficial strategy for achieving cooperative cancer therapy.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.