{"title":"Matching with transfers under distributional constraints","authors":"Devansh Jalota, Michael Ostrovsky, Marco Pavone","doi":"10.1016/j.geb.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>We study two-sided many-to-one matching markets with transferable utilities in which money can exchange hands between matched agents, subject to distributional constraints on the set of feasible allocations. In such markets, we establish that equilibrium arrangements are surplus-maximizing and study the conditions on the distributional constraints under which equilibria exist and can be computed efficiently when agents have linear preferences. Our main result is a linear programming duality method to efficiently compute equilibrium arrangements under sufficient conditions on the constraint structure guaranteeing equilibrium existence. This linear programming approach provides a method to compute market equilibria in polynomial time in the number of firms, workers, and the cardinality of the constraint set.</div></div>","PeriodicalId":48291,"journal":{"name":"Games and Economic Behavior","volume":"152 ","pages":"Pages 313-332"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games and Economic Behavior","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899825625000685","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study two-sided many-to-one matching markets with transferable utilities in which money can exchange hands between matched agents, subject to distributional constraints on the set of feasible allocations. In such markets, we establish that equilibrium arrangements are surplus-maximizing and study the conditions on the distributional constraints under which equilibria exist and can be computed efficiently when agents have linear preferences. Our main result is a linear programming duality method to efficiently compute equilibrium arrangements under sufficient conditions on the constraint structure guaranteeing equilibrium existence. This linear programming approach provides a method to compute market equilibria in polynomial time in the number of firms, workers, and the cardinality of the constraint set.
期刊介绍:
Games and Economic Behavior facilitates cross-fertilization between theories and applications of game theoretic reasoning. It consistently attracts the best quality and most creative papers in interdisciplinary studies within the social, biological, and mathematical sciences. Most readers recognize it as the leading journal in game theory. Research Areas Include: • Game theory • Economics • Political science • Biology • Computer science • Mathematics • Psychology