Nan Zhang , Lu Qian , Chang Xu , Fangfang Duan , Yuxuan Ma , Li Zhou , Yuting Zhang , Yi Ma , Qiao Lin , Kai Lu
{"title":"Innovative DNA tetrahedron inspired by ancient mortise-and-tenon technique offers new immunotherapy strategy for metastatic breast cancer","authors":"Nan Zhang , Lu Qian , Chang Xu , Fangfang Duan , Yuxuan Ma , Li Zhou , Yuting Zhang , Yi Ma , Qiao Lin , Kai Lu","doi":"10.1016/j.biomaterials.2025.123390","DOIUrl":null,"url":null,"abstract":"<div><div>Framework nucleic acids effectively meet the demands for precise size control and accurate targeting in the design of drug delivery systems, while developing a controllable drug delivery system with low immunogenicity and high efficiency for delivering nucleic acid drugs to the tumor immune microenvironment (TIME) remains significant challenge. Inspired by ancient Chinese <em>mortise and tenon</em> joint structures, this study develops an intelligent self-assembling DNA tetrahedron (TDN@siCSF-1R), which consists of a gapped DNA tetrahedron (TDN) and a therapeutic siRNA against Colony-Stimulating Factor-1 Receptor (siCSF-1R) that non-covalently bind with TDN via its gap, aiming to target tumor-associated macrophages (TAMs) and inhibit the CSF-1R pathway. Additionally, a CD206 mRNA-responsive sequence is introduced into the gapped TDN, triggering the site-specific release of siCSF-1R in M2-like TAMs, thereby achieving the precise targeting of CSF-1R in M2-like TAMs and reducing off-target effect. The <em>mortise-and-tenon</em>-like TDN@siCSF-1R synchronously combines the self-assembly flexibility and structural stability, significantly inhibiting 4T1 tumor growth, lung metastasis, and tumor recurrence after resection in vivo. Furthermore, it repolarizes M2-like TAMs and activates infiltrating T cells in TIME, thereby reshaping the immunosuppressive microenvironment, and offering a promising strategy for the clinical application of cancer immunotherapy.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"322 ","pages":"Article 123390"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225003096","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Framework nucleic acids effectively meet the demands for precise size control and accurate targeting in the design of drug delivery systems, while developing a controllable drug delivery system with low immunogenicity and high efficiency for delivering nucleic acid drugs to the tumor immune microenvironment (TIME) remains significant challenge. Inspired by ancient Chinese mortise and tenon joint structures, this study develops an intelligent self-assembling DNA tetrahedron (TDN@siCSF-1R), which consists of a gapped DNA tetrahedron (TDN) and a therapeutic siRNA against Colony-Stimulating Factor-1 Receptor (siCSF-1R) that non-covalently bind with TDN via its gap, aiming to target tumor-associated macrophages (TAMs) and inhibit the CSF-1R pathway. Additionally, a CD206 mRNA-responsive sequence is introduced into the gapped TDN, triggering the site-specific release of siCSF-1R in M2-like TAMs, thereby achieving the precise targeting of CSF-1R in M2-like TAMs and reducing off-target effect. The mortise-and-tenon-like TDN@siCSF-1R synchronously combines the self-assembly flexibility and structural stability, significantly inhibiting 4T1 tumor growth, lung metastasis, and tumor recurrence after resection in vivo. Furthermore, it repolarizes M2-like TAMs and activates infiltrating T cells in TIME, thereby reshaping the immunosuppressive microenvironment, and offering a promising strategy for the clinical application of cancer immunotherapy.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.