Jimei Zhang , Ling Zhu , Jianping Zhou , Qunying Yu , Guangyuan Yang , Chaoli Luo , Jianguo Meng , Shan Xing , Jing Liu , Donggang Mou , Xuming Yang
{"title":"BDNF alleviates senescence and enhances osteogenic differentiation in bone marrow mesenchymal stem cells via the TrkB/PI3K/AKT pathway","authors":"Jimei Zhang , Ling Zhu , Jianping Zhou , Qunying Yu , Guangyuan Yang , Chaoli Luo , Jianguo Meng , Shan Xing , Jing Liu , Donggang Mou , Xuming Yang","doi":"10.1016/j.tice.2025.102972","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bone marrow mesenchymal stem cells (BMSCs) are stem cells that reside in bone marrow and have multidirectional differentiation potential. BMSCs have been used to treat bone injury. However, long-term passage leads to the aging of BMSCs and the weakening of osteogenic differentiation. Furthermore, brain-derived neurotrophic factor (BDNF) may enhance the antiaging ability of BMSCs. The purpose of this study was to investigate the role of BDNF in the senescence and osteogenic differentiation of human BMSCs (hBMSCs).</div></div><div><h3>Methods</h3><div>The senescence of hBMSCs was induced by successive passages. The mRNA and protein expression levels were measured using RT<img>qPCR and Western blotting. Alkaline phosphatase (ALP) and alizarin red S (ARS) staining were used to identify osteogenic differentiation in the cells.</div></div><div><h3>Results</h3><div>After long-term passage, the hBMSCs morphologically gradually expanded and appeared flat, cell viability decreased, the number of fibroblast-like colony-forming units (CFU-Fs) decreased, and the number of β-galactosidase (SA-β-gal)-positive cells and the mRNA expression levels of the senescence-related genes p53, p21 and p16 increased. The activity of ALP, the level of calcium salt deposition and the protein levels of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN) and BDNF were significantly decreased. Subsequent research indicated that the senescence and inhibition of the osteogenic differentiation of hBMSCs induced by long-term culture were caused by low expression of BDNF. From a mechanistic standpoint, BDNF can activate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway by upregulating the expression of tropomyosin receptor kinase B (TrkB), thereby improving the senescence and inhibition of the osteogenic differentiation of hBMSCs caused by long-term passage.</div></div><div><h3>Conclusion</h3><div>BDNF improves the senescence and inhibition of the osteogenic differentiation of hBMSCs caused by long-term passage via regulation of the TrkB/PI3K/AKT signaling axis.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"96 ","pages":"Article 102972"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625002526","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Bone marrow mesenchymal stem cells (BMSCs) are stem cells that reside in bone marrow and have multidirectional differentiation potential. BMSCs have been used to treat bone injury. However, long-term passage leads to the aging of BMSCs and the weakening of osteogenic differentiation. Furthermore, brain-derived neurotrophic factor (BDNF) may enhance the antiaging ability of BMSCs. The purpose of this study was to investigate the role of BDNF in the senescence and osteogenic differentiation of human BMSCs (hBMSCs).
Methods
The senescence of hBMSCs was induced by successive passages. The mRNA and protein expression levels were measured using RTqPCR and Western blotting. Alkaline phosphatase (ALP) and alizarin red S (ARS) staining were used to identify osteogenic differentiation in the cells.
Results
After long-term passage, the hBMSCs morphologically gradually expanded and appeared flat, cell viability decreased, the number of fibroblast-like colony-forming units (CFU-Fs) decreased, and the number of β-galactosidase (SA-β-gal)-positive cells and the mRNA expression levels of the senescence-related genes p53, p21 and p16 increased. The activity of ALP, the level of calcium salt deposition and the protein levels of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN) and BDNF were significantly decreased. Subsequent research indicated that the senescence and inhibition of the osteogenic differentiation of hBMSCs induced by long-term culture were caused by low expression of BDNF. From a mechanistic standpoint, BDNF can activate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway by upregulating the expression of tropomyosin receptor kinase B (TrkB), thereby improving the senescence and inhibition of the osteogenic differentiation of hBMSCs caused by long-term passage.
Conclusion
BDNF improves the senescence and inhibition of the osteogenic differentiation of hBMSCs caused by long-term passage via regulation of the TrkB/PI3K/AKT signaling axis.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.