Dongyi Yang , Dong He , Fanlei Yang , Xiangyou Meng , Kai Zheng , Haitao Lin , Yi Cheng , Wai Cheong Tam , Gang Li
{"title":"Advances in harnessing biological macromolecules for periodontal tissue regeneration: A review","authors":"Dongyi Yang , Dong He , Fanlei Yang , Xiangyou Meng , Kai Zheng , Haitao Lin , Yi Cheng , Wai Cheong Tam , Gang Li","doi":"10.1016/j.ijbiomac.2025.144031","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis is a chronic multifactorial inflammatory oral disease that can lead to gingival recession, destruction of the periodontal ligament, alveolar bone loss, and tooth loss. Solutions for periodontal tissue regeneration utilize biological macromolecules, including natural ones (such as collagen (COL), alginate (ALG), chitosan (CS), silk fibroin (SF), hyaluronic acid (HA), etc.), inorganic ones (such as hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), bioactive glass (BG), etc.), synthetic, composite, and nanomaterials. Carrier materials, including hydrogels, nanofibers, nanoparticles, microneedles, and thin films, are used to effectively deliver therapeutic agents and biological factors such as stem cells, bioactive molecules, and genes, so as to promote the elimination of bacteria and tissue regeneration at the damaged periodontal sites. This review mainly focuses on the latest progress of biological macromolecules and tissue engineering technologies in periodontal regeneration in recent years. It aims to inspire the design and development of innovative biomaterials and delivery systems for novel regenerative periodontal treatments.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"311 ","pages":"Article 144031"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025045830","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a chronic multifactorial inflammatory oral disease that can lead to gingival recession, destruction of the periodontal ligament, alveolar bone loss, and tooth loss. Solutions for periodontal tissue regeneration utilize biological macromolecules, including natural ones (such as collagen (COL), alginate (ALG), chitosan (CS), silk fibroin (SF), hyaluronic acid (HA), etc.), inorganic ones (such as hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), bioactive glass (BG), etc.), synthetic, composite, and nanomaterials. Carrier materials, including hydrogels, nanofibers, nanoparticles, microneedles, and thin films, are used to effectively deliver therapeutic agents and biological factors such as stem cells, bioactive molecules, and genes, so as to promote the elimination of bacteria and tissue regeneration at the damaged periodontal sites. This review mainly focuses on the latest progress of biological macromolecules and tissue engineering technologies in periodontal regeneration in recent years. It aims to inspire the design and development of innovative biomaterials and delivery systems for novel regenerative periodontal treatments.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.