Kyu Ri Hahn , Hyun Jung Kwon , Seung Myung Moon , Woosuk Kim , In Koo Hwang , Dae Won Kim , Dae Young Yoo
{"title":"Therapeutic potential of cell-permeable PEP-1-Srxn1 in mitigating oxidative and ischemic damage in the hippocampus","authors":"Kyu Ri Hahn , Hyun Jung Kwon , Seung Myung Moon , Woosuk Kim , In Koo Hwang , Dae Won Kim , Dae Young Yoo","doi":"10.1016/j.neuint.2025.105988","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, we validated the neuroprotective effects of sulfiredoxin 1 (Srxn1) against oxidative damage in HT22 cells and ischemic damage in gerbil hippocampus. To efficiently deliver Srxn1 protein into cells or the hippocampus, a PEP-1-Srxn1 fusion protein was synthesized, and efficient delivery was visualized in HT22 mouse hippocampal neuronal cells. PEP-1-Srxn1 was delivered to HT22 cells in a concentration- and incubation time-dependent manner and showed significantly higher levels at 36 h after incubation for 1 h. Morphologically, the delivered protein was localized in the cytoplasm of HT22 cells. In addition, PEP-1-Srxn1 treatment significantly ameliorated formation of reactive oxygen species, DNA fragmentation, and cell death in HT22 cells induced by treatment with 100 μM H<sub>2</sub>O<sub>2</sub>. In gerbils, PEP-1-Srxn1 treatment significantly alleviated transient ischemia-induced forebrain hyperactivity 1 d after ischemia and memory deficits 4 d after ischemia. Neuroprotective effects were confirmed by morphological analysis of the hippocampal CA1 region 4 or 10 d after ischemia. Treatment with PEP-1-Srxn1 significantly ameliorated the formation of reactive oxygen species and lipid peroxidation in the hippocampus during the early stages (3–12 h) of ischemia. In addition, treatment with PEP-1-Srxn1 alleviated the ischemia-induced reduction of glutathione levels in the hippocampus. PEP-1-Srxn1 also decreased ischemia-induced microglial activation and pro-inflammatory cytokine release in the hippocampus. These results suggest that PEP-1-Srxn1 is a potential therapeutic agent for reducing neuronal damage induced by oxidative or ischemic damage.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"187 ","pages":"Article 105988"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000610","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we validated the neuroprotective effects of sulfiredoxin 1 (Srxn1) against oxidative damage in HT22 cells and ischemic damage in gerbil hippocampus. To efficiently deliver Srxn1 protein into cells or the hippocampus, a PEP-1-Srxn1 fusion protein was synthesized, and efficient delivery was visualized in HT22 mouse hippocampal neuronal cells. PEP-1-Srxn1 was delivered to HT22 cells in a concentration- and incubation time-dependent manner and showed significantly higher levels at 36 h after incubation for 1 h. Morphologically, the delivered protein was localized in the cytoplasm of HT22 cells. In addition, PEP-1-Srxn1 treatment significantly ameliorated formation of reactive oxygen species, DNA fragmentation, and cell death in HT22 cells induced by treatment with 100 μM H2O2. In gerbils, PEP-1-Srxn1 treatment significantly alleviated transient ischemia-induced forebrain hyperactivity 1 d after ischemia and memory deficits 4 d after ischemia. Neuroprotective effects were confirmed by morphological analysis of the hippocampal CA1 region 4 or 10 d after ischemia. Treatment with PEP-1-Srxn1 significantly ameliorated the formation of reactive oxygen species and lipid peroxidation in the hippocampus during the early stages (3–12 h) of ischemia. In addition, treatment with PEP-1-Srxn1 alleviated the ischemia-induced reduction of glutathione levels in the hippocampus. PEP-1-Srxn1 also decreased ischemia-induced microglial activation and pro-inflammatory cytokine release in the hippocampus. These results suggest that PEP-1-Srxn1 is a potential therapeutic agent for reducing neuronal damage induced by oxidative or ischemic damage.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.