First order magneto-structural transition and large magnetocaloric effect in MnFeNiSi1.5-xAlx intermetallics

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
MinJie Ji , Haicheng Xuan , CuiCui Hu , Lina Jiang , Zhida Han , Fenghua Chen , Junwei Qiao
{"title":"First order magneto-structural transition and large magnetocaloric effect in MnFeNiSi1.5-xAlx intermetallics","authors":"MinJie Ji ,&nbsp;Haicheng Xuan ,&nbsp;CuiCui Hu ,&nbsp;Lina Jiang ,&nbsp;Zhida Han ,&nbsp;Fenghua Chen ,&nbsp;Junwei Qiao","doi":"10.1016/j.physb.2025.417373","DOIUrl":null,"url":null,"abstract":"<div><div>MM'X (M, M' = transition metals, X = carbon or boron group elements) intermetallics experiencing magneto-structural transition have great potential in multifunctional applications due to the various magneto-responsive effects. This study introduces a method to finely tune structural transitions in MM'X systems over a broad temperature range. Through systematic analysis of MnFeNiSi<sub>1.5-x</sub>Al<sub>x</sub> (x = 0.065–0.095) intermetallics, a coupled magneto-structural transition was realized, characterized by the transformation from ferromagnetic TiNiSi-type orthorhombic phase at lower temperatures to paramagnetic Ni<sub>2</sub>In-type hexagonal phase at elevated temperatures. A Curie-temperature window ranged from 199 to 328 K is established. The MnFeNiSi<sub>1.435</sub>Al<sub>0.065</sub> exhibits superior magnetocaloric performance, characterized by a magnetic entropy change of −28.6 J kg<sup>−1</sup> K<sup>−1</sup> under an external magnetic field excitation of μ<sub>0</sub>ΔH = 5 T. Concurrently, this composition achieves a relative cooling power of 235.5 J/kg under equivalent field conditions, underscoring its potential for advanced refrigeration applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417373"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004909","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

MM'X (M, M' = transition metals, X = carbon or boron group elements) intermetallics experiencing magneto-structural transition have great potential in multifunctional applications due to the various magneto-responsive effects. This study introduces a method to finely tune structural transitions in MM'X systems over a broad temperature range. Through systematic analysis of MnFeNiSi1.5-xAlx (x = 0.065–0.095) intermetallics, a coupled magneto-structural transition was realized, characterized by the transformation from ferromagnetic TiNiSi-type orthorhombic phase at lower temperatures to paramagnetic Ni2In-type hexagonal phase at elevated temperatures. A Curie-temperature window ranged from 199 to 328 K is established. The MnFeNiSi1.435Al0.065 exhibits superior magnetocaloric performance, characterized by a magnetic entropy change of −28.6 J kg−1 K−1 under an external magnetic field excitation of μ0ΔH = 5 T. Concurrently, this composition achieves a relative cooling power of 235.5 J/kg under equivalent field conditions, underscoring its potential for advanced refrigeration applications.
MnFeNiSi1.5-xAlx金属间化合物的一阶磁结构转变和大磁热效应
MM'X (M, M' =过渡金属,X =碳或硼族元素)金属间化合物由于具有多种磁响应效应,在多功能应用中具有很大的潜力。本研究介绍了一种在宽温度范围内微调MM'X系统结构转变的方法。通过对MnFeNiSi1.5-xAlx (x = 0.065 ~ 0.095)金属间化合物的系统分析,实现了一种磁-结构耦合转变,其特征是低温下由铁磁性的tini型正交相转变为高温下顺磁性的ni2in型六方相。建立了199 ~ 328 K的居里温度窗。MnFeNiSi1.435Al0.065表现出优异的磁热性能,在μ0ΔH = 5 t的外磁场激励下,其磁熵变化为−28.6 J kg−1 K−1,同时,该组合物在等效磁场条件下的相对冷却功率为235.5 J/kg,突出了其在先进制冷应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信