{"title":"Single-cell and spatial transcriptomics reveals an anti-tumor neutrophil subgroup in microwave thermochemotherapy-treated lip cancer","authors":"Bingjun Chen, Huayang Fan, Xin Pang, Zeliang Shen, Rui Gao, Haofan Wang, Zhenwei Yu, Tianjiao Li, Mao Li, Yaling Tang, Xinhua Liang","doi":"10.1038/s41368-025-00366-8","DOIUrl":null,"url":null,"abstract":"<p>Microwave thermochemotherapy (MTC) has been applied to treat lip squamous cell carcinoma (LSCC), but a deeper understanding of its therapeutic mechanisms and molecular biology is needed. To address this, we used single-cell transcriptomics (scRNA-seq) and spatial transcriptomics (ST) to highlight the pivotal role of tumor-associated neutrophils (TANs) among tumor-infiltrating immune cells and their therapeutic response to MTC. <i>MNDA</i><sup>+</sup> TANs with anti-tumor activity (N1-phenotype) are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion, and these TANs are characterized by enhanced cytotoxicity, ameliorated hypoxia, and upregulated <i>IL1B</i>, activating T&NK cells and fibroblasts via <i>IL1B</i>-<i>IL1R</i>. In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC, fibroblasts accumulated in the tumor front (TF) can recruit N1-TANs via <i>CXCL2</i>-<i>CXCR2</i> and clear N2-TANs (pro-tumor phenotype) via <i>CXCL12</i>-<i>CXCR4</i>, which results in the aggregation of N1-TANs and extracellular matrix (ECM) deposition. In addition, we construct an N1-TANs marker, <i>MX2</i>, which positively correlates with better prognosis in LSCC patients, and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin (H&E)-stained images so as to conveniently guide decision making in clinical practice. Collectively, our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"121 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00366-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Microwave thermochemotherapy (MTC) has been applied to treat lip squamous cell carcinoma (LSCC), but a deeper understanding of its therapeutic mechanisms and molecular biology is needed. To address this, we used single-cell transcriptomics (scRNA-seq) and spatial transcriptomics (ST) to highlight the pivotal role of tumor-associated neutrophils (TANs) among tumor-infiltrating immune cells and their therapeutic response to MTC. MNDA+ TANs with anti-tumor activity (N1-phenotype) are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion, and these TANs are characterized by enhanced cytotoxicity, ameliorated hypoxia, and upregulated IL1B, activating T&NK cells and fibroblasts via IL1B-IL1R. In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC, fibroblasts accumulated in the tumor front (TF) can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs (pro-tumor phenotype) via CXCL12-CXCR4, which results in the aggregation of N1-TANs and extracellular matrix (ECM) deposition. In addition, we construct an N1-TANs marker, MX2, which positively correlates with better prognosis in LSCC patients, and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin (H&E)-stained images so as to conveniently guide decision making in clinical practice. Collectively, our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.