“Electricity”-assisted Catalytic Solar-to-fuel Processes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pengwei Jia, Yutang Yu, Tong Chen, Hongwei Huang
{"title":"“Electricity”-assisted Catalytic Solar-to-fuel Processes","authors":"Pengwei Jia, Yutang Yu, Tong Chen, Hongwei Huang","doi":"10.1002/anie.202508809","DOIUrl":null,"url":null,"abstract":"Efficient conversion of solar energy into chemical fuels is pivotal for establishing sustainable energy systems, yet persistent challenges in carrier dynamics and reaction selectivity hinder practical implementation. This review systematically examines the emerging paradigm of ”electricity”assisted solar-to-fuel catalysis, innovatively proposing a dual-path framework based on distinct electrical intervention mechanisms: Cross-Space Charge Transfer System and Local Electric Field Regulation System, elucidating their unique roles in bridging light absorption and fuel synthesis. In the cross space charge transfer system, charge transfer driven by external bias enhances separation of photogenerated charges in single photoelectrode photoelectrocatalysis (PEC), while the self-powered dual photoelectrodes PEC-PEC, photovoltaic-photoelectrocatalysis (PV-PEC), and photovoltaic-electrocatalysis (PV-EC) systems achieve zero energy conversion from solar energy to fuel through band matching and device integration, utilizing charge transfer driven by photogenerated potential. In the local electric field regulation system, static intrinsic electric field (spontaneous polarization and interface electric field) and dynamic electric field (piezoelectric, pyroelectric, flexoelectric and triboelectric induced transient electric field) optimize carrier transport dynamics and accelerate reactant adsorption. This article systematically summarizes promotion of diverse forms of“electricity”on solar-to-fuel catalysis, reveals energy conversion mechanisms, material design principles, performance bottlenecks, and solutions of different systems, providing insights into the future development direction of this field.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"38 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508809","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient conversion of solar energy into chemical fuels is pivotal for establishing sustainable energy systems, yet persistent challenges in carrier dynamics and reaction selectivity hinder practical implementation. This review systematically examines the emerging paradigm of ”electricity”assisted solar-to-fuel catalysis, innovatively proposing a dual-path framework based on distinct electrical intervention mechanisms: Cross-Space Charge Transfer System and Local Electric Field Regulation System, elucidating their unique roles in bridging light absorption and fuel synthesis. In the cross space charge transfer system, charge transfer driven by external bias enhances separation of photogenerated charges in single photoelectrode photoelectrocatalysis (PEC), while the self-powered dual photoelectrodes PEC-PEC, photovoltaic-photoelectrocatalysis (PV-PEC), and photovoltaic-electrocatalysis (PV-EC) systems achieve zero energy conversion from solar energy to fuel through band matching and device integration, utilizing charge transfer driven by photogenerated potential. In the local electric field regulation system, static intrinsic electric field (spontaneous polarization and interface electric field) and dynamic electric field (piezoelectric, pyroelectric, flexoelectric and triboelectric induced transient electric field) optimize carrier transport dynamics and accelerate reactant adsorption. This article systematically summarizes promotion of diverse forms of“electricity”on solar-to-fuel catalysis, reveals energy conversion mechanisms, material design principles, performance bottlenecks, and solutions of different systems, providing insights into the future development direction of this field.
“电”辅助催化太阳能转化为燃料的过程
有效地将太阳能转化为化学燃料是建立可持续能源系统的关键,但在载流子动力学和反应选择性方面的持续挑战阻碍了实际实施。本综述系统地考察了“电”辅助太阳能-燃料催化的新兴范式,创新性地提出了基于不同电干预机制的双路径框架:跨空间电荷转移系统和局部电场调节系统,阐明了它们在桥接光吸收和燃料合成中的独特作用。在跨空间电荷转移系统中,外部偏压驱动的电荷转移增强了单光电极光电催化(PEC)中光生电荷的分离,而自供电双光电极PEC-PEC、光伏-光电催化(PV-PEC)和光伏-电催化(PV-EC)系统利用光生电位驱动的电荷转移,通过波段匹配和器件集成实现了太阳能到燃料的零能量转换。在局部电场调节系统中,静态本征电场(自发极化和界面电场)和动态电场(压电、热释电、挠性电和摩擦电感应瞬态电场)优化载流子输运动力学,加速反应物吸附。本文系统总结了多种形式的“电”在太阳能-燃料催化上的推广,揭示了不同系统的能量转换机制、材料设计原理、性能瓶颈以及解决方案,为该领域未来的发展方向提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信