Leyi Fang, Wenhui Zeng, Yili Liu, Yinxing Miao, Chunmei Lu, Zhonghan Xu, Shenshen Zhou, Qi Xue, Yitong Xu, Xiqun Jiang, Jingjuan Xu, Yan Zhang, Deju Ye
{"title":"Ultrasound-Responsive Lipid Nanosonosensitizers with Size Reduction and NO Release: Synergistic Sonodynamic-Chemo-Immunotherapy for Pancreatic Tumors","authors":"Leyi Fang, Wenhui Zeng, Yili Liu, Yinxing Miao, Chunmei Lu, Zhonghan Xu, Shenshen Zhou, Qi Xue, Yitong Xu, Xiqun Jiang, Jingjuan Xu, Yan Zhang, Deju Ye","doi":"10.1002/anie.202507388","DOIUrl":null,"url":null,"abstract":"Pancreatic cancer (PC) remains difficult to treat due to its dense extracellular matrix (ECM), immunosuppressive tumor microenvironment (TME), and deep-seated anatomy. To address these challenges, we developed IR&ZnPc@LNP-NO, an ultrasound (US)-responsive lipid nanosonosensitizer that synergizes sonodynamic therapy (SDT), chemotherapy, and immunotherapy for orthotopic PC. IR&ZnPc@LNP-NO undergoes three key US-activated responses: (1) size reduction, (2) controlled release of irinotecan (IR) and nitric oxide (NO), and (3) generation of reactive oxygen species (ROS). Under low-dose US, IR&ZnPc@LNP-NO reduces in size (from ~120 nm to ~40 nm), enhancing tumor penetration, and releases NO to remodel the TME by normalizing vasculature and degrading ECM. This enhances nanosonosensitizers accumulation and cytotoxic T cells (CTLs) infiltration. High-dose US irradiation triggers the generation of cytotoxic ROS, which, in combination with IR-mediated chemotherapy, induces immunogenic cell death (ICD) and enhances antitumor immunity. Additionally, combining IR&ZnPc@LNP-NO with PD-L1 antibody (αPD-L1) immunotherapy significantly prolongs survival in orthotopic PC models. The cascade strategy—size reduction, TME remodeling, and multimodal therapy—effectively overcomes stromal and immunosuppressive barriers, offering a robust platform for treating deep-seated PC.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"51 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202507388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer (PC) remains difficult to treat due to its dense extracellular matrix (ECM), immunosuppressive tumor microenvironment (TME), and deep-seated anatomy. To address these challenges, we developed IR&ZnPc@LNP-NO, an ultrasound (US)-responsive lipid nanosonosensitizer that synergizes sonodynamic therapy (SDT), chemotherapy, and immunotherapy for orthotopic PC. IR&ZnPc@LNP-NO undergoes three key US-activated responses: (1) size reduction, (2) controlled release of irinotecan (IR) and nitric oxide (NO), and (3) generation of reactive oxygen species (ROS). Under low-dose US, IR&ZnPc@LNP-NO reduces in size (from ~120 nm to ~40 nm), enhancing tumor penetration, and releases NO to remodel the TME by normalizing vasculature and degrading ECM. This enhances nanosonosensitizers accumulation and cytotoxic T cells (CTLs) infiltration. High-dose US irradiation triggers the generation of cytotoxic ROS, which, in combination with IR-mediated chemotherapy, induces immunogenic cell death (ICD) and enhances antitumor immunity. Additionally, combining IR&ZnPc@LNP-NO with PD-L1 antibody (αPD-L1) immunotherapy significantly prolongs survival in orthotopic PC models. The cascade strategy—size reduction, TME remodeling, and multimodal therapy—effectively overcomes stromal and immunosuppressive barriers, offering a robust platform for treating deep-seated PC.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.