Balancing Strength and Extreme Thermal Resilience in Lunar Regolith Composites: The Role of Multi-Walled Carbon Nanotubes

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-13 DOI:10.1002/smll.202502220
Andrea J. Hoe, Amirreza Tarafdar, Wenhua Lin, Michael R. Fiske, Jennifer E. Edmunson, Yeqing Wang
{"title":"Balancing Strength and Extreme Thermal Resilience in Lunar Regolith Composites: The Role of Multi-Walled Carbon Nanotubes","authors":"Andrea J. Hoe, Amirreza Tarafdar, Wenhua Lin, Michael R. Fiske, Jennifer E. Edmunson, Yeqing Wang","doi":"10.1002/smll.202502220","DOIUrl":null,"url":null,"abstract":"The National Aeronautics and Space Administration's (NASA) Artemis program stands at the forefront of commercial space initiatives, aiming to establish sustainable lunar habitats, demanding resilient construction materials with minimal reliance on Earth-based resources. In response to these demands, this study explores the feasibility of reinforcing lunar regolith with multi-walled carbon nanotubes (MWCNTs) while relying on minimal water and additives for composite fabrication as a potential solution for building semi-permanent Moon bases. Composites incorporating 0.00, 0.25, 0.50, and 1.00 wt.% MWCNTs are subjected to freeze-thaw cycles, vacuum pressures, ambient environments, and oven-curing methods to emulate the Moon's harsh environment. Results show that ambient-cured composites containing MWCNTs achieve compressive strengths exceeding 35 MPa, resulting in a 44.44% increase compared to the sample without MWCNTs, highlighting the reinforcing potential of carbon nanotubes (CNTs) for extraterrestrial applications. However, thermal cycling reveals performance limitations due to mismatched coefficients of thermal expansion between MWCNTs and the regolith matrix, causing microcracking. In contrast, vacuum-cured MWCNT-free samples surpass 45 MPa, indicating that curing protocols can significantly influence densification and mechanical properties. These findings underscore the trade-offs between material composition, curing approaches, and thermal stability, offering key insights into designing robust, resource-efficient lunar construction.","PeriodicalId":228,"journal":{"name":"Small","volume":"27 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502220","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The National Aeronautics and Space Administration's (NASA) Artemis program stands at the forefront of commercial space initiatives, aiming to establish sustainable lunar habitats, demanding resilient construction materials with minimal reliance on Earth-based resources. In response to these demands, this study explores the feasibility of reinforcing lunar regolith with multi-walled carbon nanotubes (MWCNTs) while relying on minimal water and additives for composite fabrication as a potential solution for building semi-permanent Moon bases. Composites incorporating 0.00, 0.25, 0.50, and 1.00 wt.% MWCNTs are subjected to freeze-thaw cycles, vacuum pressures, ambient environments, and oven-curing methods to emulate the Moon's harsh environment. Results show that ambient-cured composites containing MWCNTs achieve compressive strengths exceeding 35 MPa, resulting in a 44.44% increase compared to the sample without MWCNTs, highlighting the reinforcing potential of carbon nanotubes (CNTs) for extraterrestrial applications. However, thermal cycling reveals performance limitations due to mismatched coefficients of thermal expansion between MWCNTs and the regolith matrix, causing microcracking. In contrast, vacuum-cured MWCNT-free samples surpass 45 MPa, indicating that curing protocols can significantly influence densification and mechanical properties. These findings underscore the trade-offs between material composition, curing approaches, and thermal stability, offering key insights into designing robust, resource-efficient lunar construction.

Abstract Image

月球风化层复合材料的平衡强度和极端热弹性:多壁碳纳米管的作用
美国国家航空航天局(NASA)的阿尔忒弥斯计划(Artemis)站在商业太空倡议的最前沿,旨在建立可持续的月球栖息地,要求具有弹性的建筑材料,尽量减少对地球资源的依赖。针对这些需求,本研究探索了用多壁碳纳米管(MWCNTs)增强月球风化层的可行性,同时依靠最少的水和添加剂来制造复合材料,作为建造半永久性月球基地的潜在解决方案。含有0.00、0.25、0.50和1.00 wt.% MWCNTs的复合材料经受冻融循环、真空压力、环境环境和烤箱固化方法,以模拟月球的恶劣环境。结果表明,与不含MWCNTs的样品相比,含MWCNTs的环境固化复合材料的抗压强度超过35 MPa,提高了44.44%,凸显了碳纳米管(CNTs)在地外应用中的增强潜力。然而,由于MWCNTs与风化层基质之间的热膨胀系数不匹配,导致微开裂,热循环显示出性能限制。相比之下,真空固化的无mwcnt样品超过45 MPa,表明固化方案可以显着影响致密化和力学性能。这些发现强调了材料成分、固化方法和热稳定性之间的权衡,为设计坚固、资源高效的月球建筑提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信