Fluoroethylene Carbonate-Enabled Gel Polymer Electrolyte for Stable High-Voltage Lithium Metal Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Min Wang, Mengjie Li, Junru Wu, Yuefeng Meng, Jing Hao, Dong Zhou, Cuiping Han, Baohua Li
{"title":"Fluoroethylene Carbonate-Enabled Gel Polymer Electrolyte for Stable High-Voltage Lithium Metal Batteries","authors":"Min Wang, Mengjie Li, Junru Wu, Yuefeng Meng, Jing Hao, Dong Zhou, Cuiping Han, Baohua Li","doi":"10.1002/adma.202502076","DOIUrl":null,"url":null,"abstract":"The stable operation of lithium metal batteries (LMBs) at high voltages is currently limited by the performance of conventional electrolytes. Fluoroethylene carbonate (FEC) exhibits unique physicochemical properties that positively impact interfacial chemistry, positioning it as a promising candidate to enhance the performance of LMBs. However, FEC is prone to the formation of corrosive HF under high voltage, which leads to the degradation of electrode interface. In this study, a hybrid gel polymer electrolyte (HGPE) based on pure FEC solvent with pentafluorophenyl methacrylate (PFPMA) monomer is presented to extend the voltage operating range. The PFPMA monomer forms a mixed-layer solid electrolyte interphase with lithium difluoro(oxalato)borate (LiDFOB) on electrode surface, effectively inhibiting the decomposition of FEC. The triangular synergistic strategy involving FEC, PFPMA, and polymer segments improves the transport of Li ions in FEC, achieving a high Li<sup>+</sup> transference number of 0.87. The designed electrolyte demonstrates good compatibility with Li metal and stabilizes LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes. As a result, the Li||NCM811 battery based HGPE exhibits a capacity retention of 83.4% after 300 cycles and 74.2% after 400 cycles, under a cut-off voltage of 4.5 V. This study provides a promising strategy for the development of GPE for high-voltage LMBs applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"29 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502076","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stable operation of lithium metal batteries (LMBs) at high voltages is currently limited by the performance of conventional electrolytes. Fluoroethylene carbonate (FEC) exhibits unique physicochemical properties that positively impact interfacial chemistry, positioning it as a promising candidate to enhance the performance of LMBs. However, FEC is prone to the formation of corrosive HF under high voltage, which leads to the degradation of electrode interface. In this study, a hybrid gel polymer electrolyte (HGPE) based on pure FEC solvent with pentafluorophenyl methacrylate (PFPMA) monomer is presented to extend the voltage operating range. The PFPMA monomer forms a mixed-layer solid electrolyte interphase with lithium difluoro(oxalato)borate (LiDFOB) on electrode surface, effectively inhibiting the decomposition of FEC. The triangular synergistic strategy involving FEC, PFPMA, and polymer segments improves the transport of Li ions in FEC, achieving a high Li+ transference number of 0.87. The designed electrolyte demonstrates good compatibility with Li metal and stabilizes LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes. As a result, the Li||NCM811 battery based HGPE exhibits a capacity retention of 83.4% after 300 cycles and 74.2% after 400 cycles, under a cut-off voltage of 4.5 V. This study provides a promising strategy for the development of GPE for high-voltage LMBs applications.

Abstract Image

稳定高压锂金属电池用氟碳酸乙烯凝胶聚合物电解质
锂金属电池(lmb)在高压下的稳定运行目前受到传统电解质性能的限制。氟乙烯碳酸酯(FEC)表现出独特的物理化学性质,对界面化学有积极的影响,使其成为增强lmb性能的有希望的候选者。然而,FEC在高压下容易形成具有腐蚀性的HF,导致电极界面退化。本研究提出了一种基于纯FEC溶剂和甲基丙烯酸五氟苯酯(PFPMA)单体的混合凝胶聚合物电解质(HGPE),以扩大电压工作范围。PFPMA单体在电极表面与二氟硼酸锂(LiDFOB)形成混合层固体电解质界面,有效抑制FEC的分解。FEC、pfma和聚合物段的三角协同策略改善了FEC中Li离子的输运,实现了0.87的高Li+转移数。所设计的电解质与锂金属具有良好的相容性,并能稳定LiNi0.8Co0.1Mn0.1O2 (NCM811)阴极。结果表明,在4.5 V的截止电压下,基于Li||NCM811电池的HGPE在300次循环后的容量保持率为83.4%,在400次循环后的容量保持率为74.2%。该研究为高压lmb应用的GPE的发展提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信