Perfluorooctanoic acid and concomitant microplastics pollution impact nitrogen elimination processes and increase N2O emission in wetlands through regulation of the functional microbiome
Yun Zhou , Deshou Cun , Yiting Wang , Yuan Wang , Yanye Li , Erik Jeppesen , Junjun Chang
{"title":"Perfluorooctanoic acid and concomitant microplastics pollution impact nitrogen elimination processes and increase N2O emission in wetlands through regulation of the functional microbiome","authors":"Yun Zhou , Deshou Cun , Yiting Wang , Yuan Wang , Yanye Li , Erik Jeppesen , Junjun Chang","doi":"10.1016/j.watres.2025.123822","DOIUrl":null,"url":null,"abstract":"<div><div>Per- and polyfluoroalkyl substances (PFASs), typical groups of emerging contaminants (ECs), can accumulate in wetland systems and adsorb onto the surface of microplastics (MPs), resulting in composite pollution. However, the effects of PFASs and their composite pollution with MPs on the ecological processes and functions of wetlands remain largely unknown. We studied the effects of perfluorooctanoic acid (PFOA) and its combined pollution with two types of MPs (polylactic acid (PLA) and polyethylene (PE)) at low and high concentration levels on nitrogen elimination processes and N<sub>2</sub>O emissions in wetlands as well as the associated microbial mechanisms over three months. The results showed that PFOA inhibited nitrification in wetland sediment (<em>P</em> < 0.05), most pronouncedly with the composite pollution of PFOA and MPs. <sup>15</sup>NO₃⁻ isotope tracing analysis showed that anammox and denitrification rates were both significantly inhibited by PFOA contamination, especially at high concentrations, while co-presence of MPs, especially PLA, weakened the inhibitory effect of PFOA on anammox and denitrification rates. The contribution of anammox to nitrogen elimination declined under PFOA and its composite pollution with high concentrations of MPs. Overall, PFOA and its composite pollution with MPs weakened the nitrogen removal capability of the wetlands. PFOA presence increased N₂O emissions (by 43.4–343 %) from the wetlands, and its composite pollution with MPs, particularly with PLA, further exacerbated N₂O emissions (by 35.6–197 %), evidencing a concentration- dependent effect. The increases were primarily attributed to that PFOA and MPs contamination regulated the community structure of the functional microbiome and reduced the abundance of ammonia-oxidizing and N₂O-reducing bacteria. DO, nitrogen (NH<sub>4</sub><sup>+</sup>-N or NO<sub>3</sub><sup>−</sup>-N) and dissolved organic carbon (DOC) concentrations were the key environmental factors influencing nitrogen loss rates in the wetlands. PFOA and its composite pollution with MPs regulated the nitrogen loss processes and N<sub>2</sub>O emission in the wetlands following distinct pathways. This study provides new insights into the impacts of PFASs and their composite pollution with MPs on nitrogen transformation and N₂O emissions in wetlands and the indispensable management of wetlands under continuous inputs of ECs.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123822"},"PeriodicalIF":12.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425007316","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFASs), typical groups of emerging contaminants (ECs), can accumulate in wetland systems and adsorb onto the surface of microplastics (MPs), resulting in composite pollution. However, the effects of PFASs and their composite pollution with MPs on the ecological processes and functions of wetlands remain largely unknown. We studied the effects of perfluorooctanoic acid (PFOA) and its combined pollution with two types of MPs (polylactic acid (PLA) and polyethylene (PE)) at low and high concentration levels on nitrogen elimination processes and N2O emissions in wetlands as well as the associated microbial mechanisms over three months. The results showed that PFOA inhibited nitrification in wetland sediment (P < 0.05), most pronouncedly with the composite pollution of PFOA and MPs. 15NO₃⁻ isotope tracing analysis showed that anammox and denitrification rates were both significantly inhibited by PFOA contamination, especially at high concentrations, while co-presence of MPs, especially PLA, weakened the inhibitory effect of PFOA on anammox and denitrification rates. The contribution of anammox to nitrogen elimination declined under PFOA and its composite pollution with high concentrations of MPs. Overall, PFOA and its composite pollution with MPs weakened the nitrogen removal capability of the wetlands. PFOA presence increased N₂O emissions (by 43.4–343 %) from the wetlands, and its composite pollution with MPs, particularly with PLA, further exacerbated N₂O emissions (by 35.6–197 %), evidencing a concentration- dependent effect. The increases were primarily attributed to that PFOA and MPs contamination regulated the community structure of the functional microbiome and reduced the abundance of ammonia-oxidizing and N₂O-reducing bacteria. DO, nitrogen (NH4+-N or NO3−-N) and dissolved organic carbon (DOC) concentrations were the key environmental factors influencing nitrogen loss rates in the wetlands. PFOA and its composite pollution with MPs regulated the nitrogen loss processes and N2O emission in the wetlands following distinct pathways. This study provides new insights into the impacts of PFASs and their composite pollution with MPs on nitrogen transformation and N₂O emissions in wetlands and the indispensable management of wetlands under continuous inputs of ECs.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.