{"title":"Overlooked risk of dissemination and mobility of antibiotic resistance genes in freshwater aquaculture of the Micropterus salmoides in Zhejiang, China","authors":"Yangcheng Ding, Shuangjing Dong, Danna Ding, Xiaoming Chen, Fangxi Xu, He Niu, Jixiao Xu, Yuhang Fan, Ruya Chen, Yijing Xia, Xiawen Qiu, Huajun Feng","doi":"10.1016/j.jhazmat.2025.138604","DOIUrl":null,"url":null,"abstract":"Residual antibiotics in aquaculture ecosystems can exert selective pressures on bacterial communities, driving bacteria to acquire antibiotic resistance genes (ARGs) through gene mutations or horizontal gene transfer (HGT). This study investigated the antibiotic resistance risk in freshwater aquaculture ecosystems of <em>Micropterus salmoides</em> in Zhejiang Province. The results revealed that oxytetracycline, ciprofloxacin and florfenicol were up to 300<!-- --> <!-- -->ng/L, and the proportion of multidrug-resistant genes varied from 32.20% to 50.70% in the surveyed aquaculture water. Additionally, approximately 9.80% of all annotated ARGs were identified as possessing plasmid-mediated horizontal transfer risks. The ARGs host prediction revealed that Actinobacteria carried the highest abundance of ARGs, up to 159.38 (coverage, ×/Gb). Furthermore, the abundance of <em>Paer_emrE</em>, <em>ksgA</em>, <em>ompR</em> and <em>golS</em> were positively correlated with Chlorophyll a concentration (<em>p</em> < 0.05), suggesting that algal blooms might facilitate the evolution and transfer of ARGs. Correlations between ARG abundances and total phosphorus, total nitrogen, pH, electrical conductivity indicated that modulating water quality parameters may serve as a viable strategy to mitigate the eco-environmental risk of ARGs in aquaculture water. This study identified antibiotic resistance characteristics in freshwater aquaculture ecosystems of <em>Micropterus salmoides</em> in Zhejiang Province, establishing a foundation on managing antibiotic resistance risks in such aquaculture environments.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"112 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138604","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residual antibiotics in aquaculture ecosystems can exert selective pressures on bacterial communities, driving bacteria to acquire antibiotic resistance genes (ARGs) through gene mutations or horizontal gene transfer (HGT). This study investigated the antibiotic resistance risk in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province. The results revealed that oxytetracycline, ciprofloxacin and florfenicol were up to 300 ng/L, and the proportion of multidrug-resistant genes varied from 32.20% to 50.70% in the surveyed aquaculture water. Additionally, approximately 9.80% of all annotated ARGs were identified as possessing plasmid-mediated horizontal transfer risks. The ARGs host prediction revealed that Actinobacteria carried the highest abundance of ARGs, up to 159.38 (coverage, ×/Gb). Furthermore, the abundance of Paer_emrE, ksgA, ompR and golS were positively correlated with Chlorophyll a concentration (p < 0.05), suggesting that algal blooms might facilitate the evolution and transfer of ARGs. Correlations between ARG abundances and total phosphorus, total nitrogen, pH, electrical conductivity indicated that modulating water quality parameters may serve as a viable strategy to mitigate the eco-environmental risk of ARGs in aquaculture water. This study identified antibiotic resistance characteristics in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province, establishing a foundation on managing antibiotic resistance risks in such aquaculture environments.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.