Louise C. Flensborg, Marcel Montanyès, Antoni Vivó Pons, Fernanda Carolina Da Silva, Martin Lindegren
{"title":"Scale-dependent effects of biodiversity and stability on marine ecosystem dynamics","authors":"Louise C. Flensborg, Marcel Montanyès, Antoni Vivó Pons, Fernanda Carolina Da Silva, Martin Lindegren","doi":"10.1002/ecog.07539","DOIUrl":null,"url":null,"abstract":"The global biodiversity loss is causing abrupt shifts in the structure and functioning of ecosystems with severe ecological and socio-economic consequences. Therefore, improving our understanding of ecosystem dynamics and regime shifts, as well as the stabilizing role of biodiversity across multiple scales is needed. Here we investigate the temporal dynamics and stability of marine ecosystems using high-resolution monitoring data on fish species composition, abundances and traits throughout European Seas. More specifically, we quantify and compare the direction and magnitude of community change at multiple spatial scales and levels of biological organization. Our results show less variability in community trajectories at larger spatial scales and higher levels of biological organization. The main underlying processes providing stability are statistical averaging arising from a larger pool of species, while at smaller spatial scales stability also emerge from functional complementarity channeled through the distribution of species traits within functional groups.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"17 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecog.07539","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The global biodiversity loss is causing abrupt shifts in the structure and functioning of ecosystems with severe ecological and socio-economic consequences. Therefore, improving our understanding of ecosystem dynamics and regime shifts, as well as the stabilizing role of biodiversity across multiple scales is needed. Here we investigate the temporal dynamics and stability of marine ecosystems using high-resolution monitoring data on fish species composition, abundances and traits throughout European Seas. More specifically, we quantify and compare the direction and magnitude of community change at multiple spatial scales and levels of biological organization. Our results show less variability in community trajectories at larger spatial scales and higher levels of biological organization. The main underlying processes providing stability are statistical averaging arising from a larger pool of species, while at smaller spatial scales stability also emerge from functional complementarity channeled through the distribution of species traits within functional groups.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.