Enhancing Spin–Orbit Torque Through Octahedral Tilt/Rotation Relaxation in CaRuO3 Films for Efficient Magnetization Switching

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Furong Han, Jing Zhang, Yu He, Bo Li, Xueqiang Feng, Fan Yang, Meng Zhao, Zuojun Song, Hui Zhang, Jine Zhang, Huaiwen Yang, Hao Wu, Kun Zhang, Weisheng Zhao, Jirong Sun, Yue Zhang
{"title":"Enhancing Spin–Orbit Torque Through Octahedral Tilt/Rotation Relaxation in CaRuO3 Films for Efficient Magnetization Switching","authors":"Furong Han, Jing Zhang, Yu He, Bo Li, Xueqiang Feng, Fan Yang, Meng Zhao, Zuojun Song, Hui Zhang, Jine Zhang, Huaiwen Yang, Hao Wu, Kun Zhang, Weisheng Zhao, Jirong Sun, Yue Zhang","doi":"10.1002/adfm.202504842","DOIUrl":null,"url":null,"abstract":"Transition metal oxides with strong spin–orbit coupling exhibit efficient charge-to-spin interconversion. The modification of crystal structure provides a promising platform for enhancing the spin–orbit torque (SOT) efficiency, which potentially leads to energy-efficient spintronic devices. Here, efficient switching of perpendicular magnetization driven by SOT in CaRuO<sub>3</sub> films is reported. By precisely tuning octahedral tilt/rotation, the enhancement of SOT efficiency is achieved, and the corresponding spin Hall conductivity can be increased from the value of 2.48 to 7.56 × (ℏ/2e) × 10<sup>4</sup> Ω<sup>−1</sup> m<sup>−1</sup>. The thickness dependence of spin Hall conductivity indicates that SOT originates from the bulk spin Hall effect. Moreover, this large SOT efficiency contributes to the reduction of power consumption in current-induced switching of magnetization. The results provide a route to further enhance the SOT efficiency and verify CaRuO<sub>3</sub> as a very promising candidate material for efficient spintronics devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"193 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504842","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal oxides with strong spin–orbit coupling exhibit efficient charge-to-spin interconversion. The modification of crystal structure provides a promising platform for enhancing the spin–orbit torque (SOT) efficiency, which potentially leads to energy-efficient spintronic devices. Here, efficient switching of perpendicular magnetization driven by SOT in CaRuO3 films is reported. By precisely tuning octahedral tilt/rotation, the enhancement of SOT efficiency is achieved, and the corresponding spin Hall conductivity can be increased from the value of 2.48 to 7.56 × (ℏ/2e) × 104 Ω−1 m−1. The thickness dependence of spin Hall conductivity indicates that SOT originates from the bulk spin Hall effect. Moreover, this large SOT efficiency contributes to the reduction of power consumption in current-induced switching of magnetization. The results provide a route to further enhance the SOT efficiency and verify CaRuO3 as a very promising candidate material for efficient spintronics devices.

Abstract Image

利用八面体倾斜/旋转弛豫增强CaRuO3薄膜的自旋-轨道转矩,实现高效磁化开关
具有强自旋-轨道耦合的过渡金属氧化物表现出高效的电荷-自旋互转换。晶体结构的改变为提高自旋轨道转矩(SOT)效率提供了一个有希望的平台,这有可能导致节能的自旋电子器件。本文报道了由SOT驱动的CaRuO3薄膜垂直磁化的高效切换。通过对八面体倾斜/旋转的精确调节,SOT的效率得到了提高,自旋霍尔电导率从2.48提高到7.56 × (h / e) × 104 Ω−1 m−1。自旋霍尔电导率的厚度依赖性表明,SOT来源于体自旋霍尔效应。此外,这种高SOT效率有助于降低电流感应磁化开关的功耗。该结果为进一步提高SOT效率和验证CaRuO3作为高效自旋电子学器件的非常有前途的候选材料提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信