Nagasuryaprasad Kotikalapudi, Deepti Ramachandran, Daniel Vieira, William B. Rubio, Gregory R. Gipson, Luca Troncone, Kylie Vestal, David E. Maridas, Vicki Rosen, Paul B. Yu, Thomas B. Thompson, Alexander S. Banks
{"title":"Acute regulation of murine adipose tissue lipolysis and insulin resistance by the TGFβ superfamily protein GDF3","authors":"Nagasuryaprasad Kotikalapudi, Deepti Ramachandran, Daniel Vieira, William B. Rubio, Gregory R. Gipson, Luca Troncone, Kylie Vestal, David E. Maridas, Vicki Rosen, Paul B. Yu, Thomas B. Thompson, Alexander S. Banks","doi":"10.1038/s41467-025-59673-7","DOIUrl":null,"url":null,"abstract":"<p>TGFβ superfamily proteins can affect cellular differentiation, thermogenesis, and fibrosis in mammalian adipose tissue. Here we describe a role for Growth Differentiation Factor 3 (GDF3) on mature adipocyte biology. We find inducible GDF3 loss of function in obese adult mice leads to reduced lipolysis, improved glucose tolerance, and reduced glycemic variability. The effects on lipolysis are driven by lower levels of β3-adrenergic receptor, decreased cAMP and PKA signaling. GDF3 is an ALK5, ALK7, ACVR2A and ACVR2B agonist and also a BMPR2 antagonist. Unlike ALK7 or activin E knockouts, acute GDF3 loss of function does not affect body weight or energy balance but significantly improves metabolic health. These results suggest that blocking GDF3 can improve metabolic health independent of body weight and food intake, an intriguing new model for developing anti-diabetic therapies. Together these results provide much-needed clarity to both the molecular pathways involved in GDF3 signaling and its physiological effects.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59673-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
TGFβ superfamily proteins can affect cellular differentiation, thermogenesis, and fibrosis in mammalian adipose tissue. Here we describe a role for Growth Differentiation Factor 3 (GDF3) on mature adipocyte biology. We find inducible GDF3 loss of function in obese adult mice leads to reduced lipolysis, improved glucose tolerance, and reduced glycemic variability. The effects on lipolysis are driven by lower levels of β3-adrenergic receptor, decreased cAMP and PKA signaling. GDF3 is an ALK5, ALK7, ACVR2A and ACVR2B agonist and also a BMPR2 antagonist. Unlike ALK7 or activin E knockouts, acute GDF3 loss of function does not affect body weight or energy balance but significantly improves metabolic health. These results suggest that blocking GDF3 can improve metabolic health independent of body weight and food intake, an intriguing new model for developing anti-diabetic therapies. Together these results provide much-needed clarity to both the molecular pathways involved in GDF3 signaling and its physiological effects.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.