Francisco Javier del Arco Santos and Jakob S Kottmann
{"title":"A hybrid qubit encoding: splitting Fock space into Fermionic and Bosonic subspaces","authors":"Francisco Javier del Arco Santos and Jakob S Kottmann","doi":"10.1088/2058-9565/adbdee","DOIUrl":null,"url":null,"abstract":"Efficient encoding of electronic operators into qubits is essential for quantum chemistry simulations. Most of the methods treat Fermionic degrees of freedom and qubits in a one-to-one fashion, handling their interactions. Alternatively, pairs of electrons can be represented as quasi-particles and encoded into qubits, significantly simplifying calculations. This work presents a Hybrid Encoding that allows splitting the Fock space into Fermionic and Bosonic subspaces. By leveraging the strengths of both approaches, we provide a flexible framework for optimizing quantum simulations based on molecular characteristics and hardware constraints.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"27 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adbdee","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient encoding of electronic operators into qubits is essential for quantum chemistry simulations. Most of the methods treat Fermionic degrees of freedom and qubits in a one-to-one fashion, handling their interactions. Alternatively, pairs of electrons can be represented as quasi-particles and encoded into qubits, significantly simplifying calculations. This work presents a Hybrid Encoding that allows splitting the Fock space into Fermionic and Bosonic subspaces. By leveraging the strengths of both approaches, we provide a flexible framework for optimizing quantum simulations based on molecular characteristics and hardware constraints.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.