{"title":"Finiteness properties and relatively hyperbolic groups","authors":"Harsh Patil","doi":"10.1112/blms.70039","DOIUrl":null,"url":null,"abstract":"<p>We show that properties <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$FP_n$</annotation>\n </semantics></math> hold for a relatively hyperbolic group if and only if they hold for all the peripheral subgroups. As an application we show that there are at least countably many distinct quasi-isometry classes of one-ended non-amenable groups that are type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> but not <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$F_{n+1}$</annotation>\n </semantics></math> and similarly of type <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$FP_n$</annotation>\n </semantics></math> and not <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$FP_{n+1}$</annotation>\n </semantics></math> for all positive integers <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1445-1452"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that properties and hold for a relatively hyperbolic group if and only if they hold for all the peripheral subgroups. As an application we show that there are at least countably many distinct quasi-isometry classes of one-ended non-amenable groups that are type but not and similarly of type and not for all positive integers .