{"title":"Record Warmth of 2023 and 2024 was Highly Predictable and Resulted From ENSO Transition and Northern Hemisphere Absorbed Shortwave Anomalies","authors":"Eduardo Blanchard-Wrigglesworth, Roberto Bilbao, Aaron Donohoe, Stefano Materia","doi":"10.1029/2025GL115614","DOIUrl":null,"url":null,"abstract":"<p>Global mean temperature rapidly warmed during 2023, making 2023 the second warmest year on record at 1.45°C above pre-industrial climate, and 2024 became the first year on record to surpass 1.5°C. Here we explore the likelihood, mechanisms, and predictability of the rapid warming during 2023 with CMIP simulations and a fully-coupled forecast ensemble initialized on 1 November 2022. The year-to-year (Y2Y) warming for the second half of 2023 of 0.49°C equaled the largest on record since 1850, and is simulated as a 1 in 6,000 years event. The forecast ensemble-mean predicts about 75% of the observed warming during 2023. The remaining 25% of the warming lies within the forecast spread, with members that forecast a strong 2023 El Niño and positive absorbed shortwave anomalies more likely to forecast the entirety of the observed warming. The forecast ensemble succesfully predicts 2024 to be the first year on record above 1.5°C.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115614","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115614","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Global mean temperature rapidly warmed during 2023, making 2023 the second warmest year on record at 1.45°C above pre-industrial climate, and 2024 became the first year on record to surpass 1.5°C. Here we explore the likelihood, mechanisms, and predictability of the rapid warming during 2023 with CMIP simulations and a fully-coupled forecast ensemble initialized on 1 November 2022. The year-to-year (Y2Y) warming for the second half of 2023 of 0.49°C equaled the largest on record since 1850, and is simulated as a 1 in 6,000 years event. The forecast ensemble-mean predicts about 75% of the observed warming during 2023. The remaining 25% of the warming lies within the forecast spread, with members that forecast a strong 2023 El Niño and positive absorbed shortwave anomalies more likely to forecast the entirety of the observed warming. The forecast ensemble succesfully predicts 2024 to be the first year on record above 1.5°C.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.